【題目】已知四棱錐的底面是菱形,底面,上的任意一點(diǎn).

(1)求證:平面平面

(2)設(shè),是否存在點(diǎn)使平面與平面所成的銳二面角的大小為?如果存在,求出點(diǎn)的位置,如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1)見解析;(2)見解析.

【解析】

(1)先證明平面,再證明平面平面;(2)設(shè)的交點(diǎn)為,以、所在直線分別為、軸,以過(guò)垂直平面的直線為軸建立空間直角坐標(biāo)系(如圖),利用向量法求出,解方程即得解.

(1)證明:∵平面,平面,∴.

∵四邊形是菱形,∴.

,∴平面.

平面,∴平面平面.

(2)設(shè)的交點(diǎn)為,以所在直線分別為、軸,

以過(guò)垂直平面的直線為軸建立空間直角坐標(biāo)系(如圖),

,,,.

設(shè),則,,

設(shè),

,

.,

設(shè)平面的法向量,

,∴.

求得為平面的一個(gè)法向量.

同理可得平面的一個(gè)法向量為

∵平面與平面所成的銳二面角的大小為,

,解得:.

的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為選拔,兩名選手參加某項(xiàng)比賽,在選拔測(cè)試期間,測(cè)試成績(jī)大于或等于80分評(píng)價(jià)為優(yōu)秀等級(jí),他們參加選拔的5次測(cè)試成績(jī)(滿分100分)記錄如下:

1)從的成績(jī)中各隨機(jī)抽取一個(gè),求選手測(cè)試成績(jī)?yōu)?/span>優(yōu)秀的概率;

2)從、兩人測(cè)試成績(jī)?yōu)?/span>優(yōu)秀的成績(jī)中各隨機(jī)抽取一個(gè),求的成績(jī)比低的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點(diǎn),且.

(1)求的方程;

(2)試問(wèn):在軸的正半軸上是否存在一點(diǎn),使得的外心在上?若存在,求的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過(guò)F且與x軸垂直的直線交該拋物線于A,B兩點(diǎn),|AB|=4.

(1)求拋物線的方程;

(2)過(guò)點(diǎn)F的直線l交拋物線于P,Q兩點(diǎn),若△OPQ的面積為4,求直線l的斜率(其中O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)到其準(zhǔn)線的距離為.

(1)求拋物線的方程;

(2)設(shè)直線與拋物線相交于兩點(diǎn),問(wèn)拋物線上是否存在點(diǎn),使得是正三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,左焦點(diǎn)為,離心率,過(guò)點(diǎn)的直線與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn),若

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)圓上任意一點(diǎn)作圓的切線與橢圓交于,兩點(diǎn),以為直徑的圓是否過(guò)定點(diǎn),如過(guò)定點(diǎn),求出該定點(diǎn);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,左焦點(diǎn)為,離心率,過(guò)點(diǎn)的直線與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn),若

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)圓上任意一點(diǎn)作圓的切線與橢圓交于兩點(diǎn),以為直徑的圓是否過(guò)定點(diǎn),如過(guò)定點(diǎn),求出該定點(diǎn);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab0),其右焦點(diǎn)為F1,0),離心率為

)求橢圓C的方程;

)過(guò)點(diǎn)F作傾斜角為α的直線l,與橢圓C交于P,Q兩點(diǎn).

)當(dāng)時(shí),求△OPQO為坐標(biāo)原點(diǎn))的面積;

)隨著α的變化,試猜想|PQ|的取值范圍,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD平面CDEF,BAD=CDA=90,M是線段AE上的動(dòng)點(diǎn).

(1)試確定點(diǎn)M的位置,使AC平面DMF,并說(shuō)明理由;

(2)(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案