【題目】已知函數(shù),且.
(1)若函數(shù)在上恒有意義,求的取值范圍;
(2)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在求出的值,若不存在請(qǐng)說(shuō)明理由.
【答案】(1);(2).
【解析】
(1)根據(jù)在上恒有意義,則在上恒成立.討論對(duì)稱(chēng)軸的位置,即可求得的取值范圍.
(2)討論與兩種情況,結(jié)合復(fù)函函數(shù)單調(diào)性即可判斷是否符合單調(diào)遞增.再根據(jù)最大值為,代入的值,解方程即可求解.
(1)函數(shù)在上恒有意義
即在上恒成立
令
對(duì)稱(chēng)軸為,開(kāi)口向上
當(dāng)時(shí),只需,即,解得,所以
當(dāng)時(shí),只需,即,解得,所以
當(dāng)時(shí), 只需,即,解得,所以
綜上可知, 的取值范圍為
(2)函數(shù)對(duì)稱(chēng)軸為
由復(fù)合函數(shù)單調(diào)性的性質(zhì)可知:
當(dāng)時(shí)為單調(diào)遞減函數(shù), 在上為單調(diào)遞增函數(shù),所以在上單調(diào)遞減,不合題意
當(dāng)時(shí), 為單調(diào)遞增函數(shù), 若在上單調(diào)遞增,則在上為單調(diào)遞增函數(shù).
所以由對(duì)稱(chēng)軸在左側(cè)可得
因?yàn)樽畲笾禐?/span>2,則
即
即,化簡(jiǎn)可得
解得或
因?yàn)?/span>
所以
當(dāng)函數(shù)在區(qū)間上為增函數(shù),且最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求的單調(diào)增區(qū)間;
(2)若恰有三個(gè)不同的零點(diǎn)().
①求實(shí)數(shù)的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,側(cè)棱與底面垂直,,,,點(diǎn) 是的中點(diǎn).
(1)求證:平面;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知經(jīng)銷(xiāo)某種商品的電商在任何一個(gè)銷(xiāo)售季度內(nèi),每售出噸該商品可獲利潤(rùn)萬(wàn)元,未售出的商品,每噸虧損萬(wàn)元.根據(jù)往年的銷(xiāo)售經(jīng)驗(yàn),得到一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷(xiāo)售季度籌備了噸該商品.現(xiàn)以(單位:噸, )表示下一個(gè)銷(xiāo)售季度的市場(chǎng)需求量, (單位:萬(wàn)元)表示該電商下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該商品獲得的利潤(rùn).
(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的平均數(shù)與中位數(shù)的大。
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)不少于57萬(wàn)元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》卷五《商功》中有如下敘述“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高一丈“芻甍”指的是底面為矩形的對(duì)稱(chēng)型屋脊?fàn)畹膸缀误w,“下廣三丈”是指底面矩形寬三丈,“袤四丈”是指底面矩形長(zhǎng)四丈,“上袤二丈”是指脊長(zhǎng)二丈,“無(wú)寬”是指脊無(wú)寬度,“高一丈”是指幾何體的高為一丈.現(xiàn)有一個(gè)芻甍如圖所示,下廣三丈,袤四丈,上袤三丈,無(wú)廣,高二丈,則該芻甍的外接球的表面積為_______________平方丈.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,求證:函數(shù)恰有一個(gè)負(fù)零點(diǎn);(用圖象法證明不給分)
(2)若函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了該種藥用昆蟲(chóng)的6組觀測(cè)數(shù)據(jù)如下表:
溫度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得:
,,線性回歸模型的殘差平方和,,
其中分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),
(1)若用線性回歸模型,求y關(guān)于x的回歸方程(精確到0.1);
(2)若用非線性回歸模型求得y關(guān)于x的回歸方程為,且相關(guān)指數(shù).
①試與1中的回歸模型相比,用說(shuō)明哪種模型的擬合效果更好.
②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該用哪種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù))
附:一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計(jì)為,;相關(guān)指數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.
(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫(gè)數(shù);
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);
(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,、分別為橢圓的左、右焦點(diǎn).設(shè)不經(jīng)過(guò)焦點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn)、,焦點(diǎn)到直線的距離為.若直線、、的斜率依次成等差數(shù)列,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com