【題目】在直三棱柱中,,,點,分別為棱,的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析下(2)
【解析】
(1)取的中點,連接,,證明,進而證得得解;(2)在平面內(nèi)作交于點,以為原點,,、分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.求得平面的法向量,利用線面角的向量公式求解
(1)取的中點,連接,,
則在中,,,
又點是的中點,
所以.
而且,
所以,
所以四邊形是平行四邊形,
所以,
又平面,平面,
所以平面.
(2)在平面內(nèi)作交于點,
以為原點,,、分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.
設(shè),則,,,,,
所以,,.
設(shè)平面的一個法向量為,
則即
取,得,
設(shè)直線與平面所成角為,
則.
即直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo),直線經(jīng)過點,且傾斜角為.
(1)寫出曲線的直角坐標(biāo)方程和直線的標(biāo)準(zhǔn)參數(shù)方程;
(2)直線與曲線交于兩點,直線的參數(shù)方程為(t為參數(shù)),直線與曲線交于兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,、、分別為棱、、的中點,平面,,,,則( )
A.三棱錐的體積為
B.直線與直線垂直
C.平面截三棱錐所得的截面面積為
D.點與點到平面的距離相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差為2,前n項和為Sn,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定數(shù)列,記該數(shù)列前項中的最大項為,該數(shù)列后項,, …..,中的最小項為,.
(1)對于數(shù)列:3,4,7,1,求出相應(yīng)的,,;
(2)是數(shù)列的前項和,若對任意,有,其中且,
①設(shè),判斷數(shù)列是否為等比數(shù)列;
②若數(shù)列對應(yīng)的滿足:對任意的正整數(shù)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知兩定點,,動點滿足.
(1)求動點的軌跡的方程;
(2)軌跡上有兩點,,它們關(guān)于直線:對稱,且滿足,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以為極點,軸正半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為(為參數(shù),),曲線的極坐標(biāo)方程為,點是與的一個交點,其極坐標(biāo)為.設(shè)射線與曲線相交于,兩點,與曲線相交于,兩點.
(1)求,的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是空間中的兩個平面,l,m是兩條直線,則使得α∥β成立的一個充分條件是( )
A.lα,mβ,l∥mB.l⊥m,l∥α,m⊥β
C.lα,mα,l∥β,m∥βD.l∥m,l⊥α,m⊥β
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com