【題目】已知平面α⊥平面β,αβn,直線lα,直線mβ,則下列說法正確的個(gè)數(shù)是(  )

①若lnlm,則lβ;②若ln,則lβ;③若mn,lm,則mα.

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】因?yàn)槠矫?/span>α⊥平面β,αβ=n,直線lα,直線mβ,

所以①若ln,lβ正確;②若ln,由線面平行的判定定理得到lβ;正確;

③若mn,由面面垂直的性質(zhì)可得mα.正確;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,側(cè)面底面,底面為直角梯形,其中,,中點(diǎn).

(1)求證:平面;

(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在上任取三個(gè)數(shù),均存在以為三邊的三角形,則實(shí)數(shù)的取值范圍為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

()寫出函數(shù)的定義域和值域;

()證明函數(shù)為單調(diào)遞減函數(shù);

()試判斷函數(shù)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小型餐館一天中要購(gòu)買,兩種蔬菜,,蔬菜每公斤的單價(jià)分別為2元和3元.根據(jù)需要蔬菜至少要買6公斤,蔬菜至少要買4公斤,而且一天中購(gòu)買這兩種蔬菜的總費(fèi)用不能超過60元.如果這兩種蔬菜加工后全部賣出,,兩種蔬菜加工后每公斤的利潤(rùn)分別為2元和1元,餐館如何采購(gòu)這兩種蔬菜使得利潤(rùn)最大,利潤(rùn)最大為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是 (  )

A. 多面體至少有四個(gè)面

B. 九棱柱有9條側(cè)棱,9個(gè)側(cè)面側(cè)面為平行四邊形

C. 長(zhǎng)方體、正方體都是棱柱

D. 三棱柱的側(cè)面為三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知四邊形為直角梯形, , , 為等邊三角形, ,如圖2,將, 分別沿折起,使得平面平面,平面平面,連接,設(shè)上任意一點(diǎn).

1)證明: 平面;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間

(2)設(shè)函數(shù),存在,,使得成立成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx對(duì)一切實(shí)數(shù)x,y均有fx+y-fyx+2y+1x成立,且f1=0

1求f0;

2求fx;

3當(dāng)0<x<2時(shí)不等式fx>ax-5恒成立,求a的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案