【題目】已知函數(shù),其中為實(shí)數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),求證:.
【答案】(1)見(jiàn)解析;(2)證明見(jiàn)解析
【解析】
(1)計(jì)算導(dǎo)數(shù),采用分類(lèi)討論的方法,,與,根據(jù)導(dǎo)數(shù)的符號(hào)判定原函數(shù)的單調(diào)性,可得結(jié)果.
(2)根據(jù)(1)的結(jié)論,可得,然后構(gòu)造新函數(shù),通過(guò)導(dǎo)數(shù)研究新函數(shù)的單調(diào)性,并計(jì)算最值,然后與比較大小,可得結(jié)果.
(1)函數(shù)的定義域?yàn)?/span>,
①若,即時(shí),
則,此時(shí)的單調(diào)減區(qū)間為;
②若,時(shí),
令的兩根為,
,
,
所以的單調(diào)減區(qū)間為,,
單調(diào)減區(qū)間為.
③當(dāng)時(shí),
,
,
此時(shí)的單調(diào)增區(qū)間為,
單調(diào)減區(qū)間為.
(2)當(dāng)時(shí),
函數(shù)有兩個(gè)極值點(diǎn),
且,.
則
則
要證,
只需證.
構(gòu)造函數(shù),
則,
在上單調(diào)遞增,又,
,且在定義域上不間斷,
由零點(diǎn)存在定理可知:
在上唯一實(shí)根,且.
則在上遞減,上遞增,
所以的最小值為.
因?yàn)?/span>,
當(dāng),,則,
所以恒成立.
所以,
所以,得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)境指數(shù)是“宜居城市”評(píng)比的重要指標(biāo),根據(jù)以下環(huán)境指數(shù)的數(shù)據(jù),對(duì)名列前20名的“宜居城市”的環(huán)境指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示,現(xiàn)從環(huán)境指數(shù)在和內(nèi)的“宜居城市”中隨機(jī)抽取2個(gè)市進(jìn)行調(diào)研,則至少有1個(gè)市的環(huán)境指數(shù)在的概率為( )
組號(hào) | 分組 | 頻數(shù) |
1 | 2 | |
2 | 8 | |
3 | 7 | |
4 | 3 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù).
(1)討論的單調(diào)性;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:對(duì)任意的正整數(shù)都有,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)對(duì)設(shè)備進(jìn)行升級(jí)改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)指標(biāo)值落在[20,40)內(nèi)的產(chǎn)品視為合格品,否則為不合格品,圖1是設(shè)備改造前樣本的頻率分布直方圖,表1是設(shè)備改造后的頻數(shù)分布表.
表1,設(shè)備改造后樣本的頻數(shù)分布表:
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) | 2 | 18 | 48 | 14 | 16 | 2 |
(1)請(qǐng)估計(jì)該企業(yè)在設(shè)備改造前的產(chǎn)品質(zhì)量指標(biāo)的平均數(shù);
(2)企業(yè)將不合格品全部銷(xiāo)毀后,并對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在[25,30)內(nèi)的定為一等品,每件售價(jià)240元,質(zhì)量指標(biāo)值落在[20,25)或[30,35)內(nèi)的定為二等品,每件售價(jià)180元,其它的合格品定為三等品,每件售價(jià)120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率,現(xiàn)有一名顧客隨機(jī)購(gòu)買(mǎi)兩件產(chǎn)品,設(shè)其支付的費(fèi)用為X(單位:元),求X得分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義域?yàn)?/span>R的奇函數(shù),且滿足f(x﹣2)=f(x+2),當(dāng)x∈(0,2)時(shí),f(x)=ln(x2﹣x+1),則方程f(x)=0在區(qū)間[0,8]上的解的個(gè)數(shù)是( 。
A.3B.5C.7D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若函數(shù)是上的增函數(shù),求的取值范圍;
(2)若,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù).
(1)討論的單調(diào)性;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:對(duì)任意的正整數(shù)都有,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 設(shè)命題p:函數(shù)y=在定義域上為減函數(shù);命題q:a,b∈(0,+∞),當(dāng)a+b=1時(shí),+=3.以下說(shuō)法正確的是( )
A. p∨q為真B. p∧q為真
C. p真q假D. p,q均假
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com