【題目】已知.

1)若函數(shù)上的增函數(shù),求的取值范圍;

2)若,求的單調(diào)增區(qū)間.

【答案】1 2)答案不唯一,見解析

【解析】

(1)由函數(shù)上的增函數(shù),可得上恒成立,分離參數(shù)可得:,令,求出最小值即可得解;

2)由,求導(dǎo)后分三種情況進(jìn)行討論即可得解.

解:(1,

上的增函數(shù),故上恒成立,

上恒成立.

,得

,得,

,得,

故函數(shù)上單調(diào)遞減,在上單詞遞增,

上單調(diào)遞減.

∴當(dāng)時,有極小值,當(dāng)時,有極大值.

又∵,∴,

為函數(shù)的最小值.

,但當(dāng)時,亦是上的增函數(shù),

故知的取值范圍是.

2

,得,

由判別式可知

①當(dāng)時,,即函數(shù)上單調(diào)遞增;

②當(dāng)時,有,

即函數(shù)上單調(diào)遞增;

③當(dāng)時,有,,

即函數(shù)、上單調(diào)遞增.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.小華同學(xué)利用劉徽的“割圓術(shù)”思想在半徑為1的圓內(nèi)作正邊形求其面積,如圖是其設(shè)計的一個程序框圖,則框圖中應(yīng)填入、輸出的值分別為( )

(參考數(shù)據(jù):

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】萊昂哈德·歐拉,瑞士數(shù)學(xué)家、自然科學(xué)家.歲時入讀巴塞爾大學(xué),歲大學(xué)畢業(yè),歲獲得碩士學(xué)位,他是數(shù)學(xué)史上最多產(chǎn)的數(shù)學(xué)家.其中之一就是他發(fā)現(xiàn)并證明歐拉公式,從而建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系.若將其中的取作就得到了歐拉恒等式,它是數(shù)學(xué)里令人著迷的一個公式,它將數(shù)學(xué)里最重要的幾個量聯(lián)系起來:兩個超越數(shù):自然對數(shù)的底數(shù),圓周率;兩個單位:虛數(shù)單位和自然數(shù)單位;以及被稱為人類偉大發(fā)現(xiàn)之一的,數(shù)學(xué)家評價它是“上帝創(chuàng)造的公式”請你根據(jù)歐拉公式:,解決以下問題:

1)試將復(fù)數(shù)寫成、,是虛數(shù)單位)的形式;

2)試求復(fù)數(shù)的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角、、所對的邊分別為、,,當(dāng)角取最大值時,的周長為,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了了解聲音強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強(qiáng)度和聲音能量,2,,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.

表中.

1)根據(jù)散點圖判斷,哪一個適宜作為聲音強(qiáng)度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭為了解冬季用電量(度)與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計了某5天的用電量與當(dāng)天氣溫,并制作了對照表,經(jīng)過統(tǒng)計分析,發(fā)現(xiàn)氣溫在一定范圍內(nèi)時,用電量與氣溫具有線性相關(guān)關(guān)系:

0

1

2

3

4

(度)

15

12

11

9

8

1)求出用電量關(guān)于氣溫的線性回歸方程;

2)在這5天中隨機(jī)抽取兩天,求至少有一天用電量低于10(度)的概率.

(附:回歸直線方程的斜率和截距的最小二乘法估計公式為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若關(guān)于的不等式的解集為,求的值;

(2)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,c為常數(shù),nN*),且a1,a2a5成公比不為1的等比數(shù)列.

(1)求證:數(shù)列是等差數(shù)列;

(2)求c的值;

(3)設(shè)bn=anan+1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案