【題目】某家庭為了解冬季用電量(度)與氣溫之間的關(guān)系,隨機統(tǒng)計了某5天的用電量與當(dāng)天氣溫,并制作了對照表,經(jīng)過統(tǒng)計分析,發(fā)現(xiàn)氣溫在一定范圍內(nèi)時,用電量與氣溫具有線性相關(guān)關(guān)系:
0 | 1 | 2 | 3 | 4 | |
(度) | 15 | 12 | 11 | 9 | 8 |
(1)求出用電量關(guān)于氣溫的線性回歸方程;
(2)在這5天中隨機抽取兩天,求至少有一天用電量低于10(度)的概率.
(附:回歸直線方程的斜率和截距的最小二乘法估計公式為,)
【答案】(1) (2)
【解析】
(1)根據(jù)表中數(shù)據(jù)計算得到最小二乘法所需數(shù)據(jù),根據(jù)最小二乘法計算可得結(jié)果;
(2)采用列舉法得到所有基本事件和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.
(1)由表格數(shù)據(jù)知:,,
,,
,.
用電量關(guān)于氣溫的線性回歸方程為.
(2)假設(shè)事件為隨機從天中抽取天,至少有一天用電量低于度,
從這天中隨機抽取天,總共有,,,,,,,,,,種抽取方法;
用電量至少有天低于度的情況有,,,,,,,共種情況;
.
在這天中隨機抽取兩天,至少有一天用電量低于度的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為(其中為常數(shù)).
(1)若曲線N與曲線M只有一個公共點,求的取值范圍;
(2)當(dāng)時,求曲線M上的點與曲線N上的點之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)對設(shè)備進行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,若該項指標(biāo)值落在[20,40)內(nèi)的產(chǎn)品視為合格品,否則為不合格品,圖1是設(shè)備改造前樣本的頻率分布直方圖,表1是設(shè)備改造后的頻數(shù)分布表.
表1,設(shè)備改造后樣本的頻數(shù)分布表:
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) | 2 | 18 | 48 | 14 | 16 | 2 |
(1)請估計該企業(yè)在設(shè)備改造前的產(chǎn)品質(zhì)量指標(biāo)的平均數(shù);
(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質(zhì)量指標(biāo)值落在[25,30)內(nèi)的定為一等品,每件售價240元,質(zhì)量指標(biāo)值落在[20,25)或[30,35)內(nèi)的定為二等品,每件售價180元,其它的合格品定為三等品,每件售價120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率,現(xiàn)有一名顧客隨機購買兩件產(chǎn)品,設(shè)其支付的費用為X(單位:元),求X得分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球2分,取出藍球得3分.
(1)當(dāng)a=3,b=2,c=1時,從該袋子中任。ㄓ蟹呕,且每球取到的機會均等)2個球,記隨機變量ξ為取出此2球所得分數(shù)之和.,求ξ分布列;
(2)從該袋子中任。ㄇ颐壳蛉〉降臋C會均等)1個球,記隨機變量η為取出此球所得分數(shù).若,求a:b:c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù).
(1)討論的單調(diào)性;
(2)若在上恒成立,求實數(shù)的取值范圍;
(3)求證:對任意的正整數(shù)都有,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com