等差數(shù)列{an}滿足:a2=5,a4+a10=30的前n項和為Sn
(1)求an及Sn;
(2)數(shù)列{bn}滿足bn(a
 
3
n
-1)=8(n∈N*),數(shù)列{bn}的前n項和為Tn,求證:Tn<2.
考點:數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列的通項公式求出首項與公差,由此能求出an及Sn
(2)由已知得an2-1=4n(n+1),從而bn=
8
an2-1
=
2
n(n+1)
=2(
1
n
-
1
n+1
),由此利用裂項法能證明Tn<2.
解答: (1)解:設(shè)等差數(shù)列{an}公差為d,
由a2=5,a4+a10=30,
a1+d=5
2a1+12d=30
,
解得d=2,a1=3,
∴an=3+(n-1)×2=2n+1,
Sn=3n+
n(n+1)
2
×3
=n2+2n.
(2)證明:∵an=2n+1,∴an2-1=4n(n+1),
∴bn=
8
an2-1
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
∴Tn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=2(1-
1
n+1

=2-
2
n+1
<2.
∴Tn<2.
點評:本題考查數(shù)列的通項公式和前n項和的求法,是中檔題,解題時要認真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={x|x2+x-6=0},N={x|ax-1=0},且N⊆M,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
(
x
-1)
0
4-2x
的定義域為( 。
A、(0,1]∪(1,2]
B、[0,1)∪(1,2)
C、[0,1)∪(1,2]
D、[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長為2的正方體ABCD-A1B1C1D1,P是棱CC1上任一點,CC1=m,(0<m<2).
(1)是否存在滿足條件的實數(shù)m,使平面BPD1⊥面BDD1B1?若存在,求出m的值;不存在,說明理由.
(2)是否存在實數(shù)m,使得三棱錐B-PAC和四棱錐P-A1B1C1D1的體積相等?存在,求出m的值;不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+lnx-3的零點位于區(qū)間( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2ln(ax)(a>0).
(1)a=e時,求f(x)在x=1處的切線方程;
(2)若f′(x)≤x2對任意的x>0恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=1時,設(shè)函數(shù)g(x)=
f(x)
x
,若x1,x2∈(
1
e
,1),x1+x2<1,求證:x1•x2<(x1+x24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上不恒為零的函數(shù),且對于任意實數(shù)a,b∈R,滿足:f(ab)=af(b)+bf(a),f(2)=2,an=
f(2n)
n
(n∈N*),bn=
f(2n)
2n
(n∈N*).
考察下列結(jié)論:①f(0)=f(1);  
②f(x)為偶函數(shù); 
③數(shù)列{an}為等比數(shù)列; 
④數(shù)列{bn}為等差數(shù)列.
其中正確的結(jié)論共有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}的前n項和為Sn,點(n,Sn)均在函數(shù)y=
3
2
x2-
1
2
x的圖象上.
(1)求數(shù)列{an}的通項公式.
(2)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項和,求使得Tn
m
20
對所有n∈N+都成立的最小整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一曲線是與兩個定點A(-3,0)、B(3,0)的距離之比為
1
2
的點的軌跡,求此曲線的方程.

查看答案和解析>>

同步練習(xí)冊答案