【題目】已知橢圓的左、右頂點分別為C、D,且過點,P是橢圓上異于C、D的任意一點,直線PC,PD的斜率之積為

1)求橢圓的方程;

2O為坐標原點,設(shè)直線CP交定直線x = m于點M,m為何值時,為定值.

【答案】12

【解析】

(1)設(shè),根據(jù)題意可求得,再代入橢圓方程即可求解.

(2)根據(jù)(1)中的結(jié)論, 設(shè)直線,并聯(lián)立與橢圓的方程,求得,,再表達出,根據(jù)恒成立問題求得系數(shù)的關(guān)系即可.也可直接設(shè)表達出,利用滿足橢圓的方程進行化簡,同理可得m的值.

解:(1)橢圓過點,∴,①

又因為直線的斜率之積為,故.

.,②

聯(lián)立①②得

∴所求的橢圓方程為

2)方法1:由(1)知,.由題意可設(shè),

x=m,.又設(shè)

整理得:

,∴,,

所以,

,

要使k無關(guān),只需,此時恒等于4.

方法2:設(shè),則,令x=m,,

,

所以,

要使無關(guān),只須,此時.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線在點處的切線方程為,求的值;

2)若的導函數(shù)存在兩個不相等的零點,求實數(shù)的取值范圍;

3)當時,是否存在整數(shù),使得關(guān)于的不等式恒成立?若存在,求出的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓()的左、右焦點分別是,,點的上頂點,點上,,且.

1)求的方程;

2)已知過原點的直線與橢圓交于,兩點,垂直于的直線且與橢圓交于,兩點,若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數(shù)a的取值范圍為(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況如三維餅圖(2)所示.對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是(

A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變

B.他們健身后,體重在區(qū)間[100kg110kg)內(nèi)的人數(shù)減少了4

C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg

D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠加工某種零件需要經(jīng)過,,三道工序,且每道工序的加工都相互獨立,三道工序加工合格的概率分別為,.三道工序都合格的零件為一級品;恰有兩道工序合格的零件為二級品;其它均為廢品,且加工一個零件為二級品的概率為.

1)求

2)若該零件的一級品每個可獲利200元,二級品每個可獲利100元,每個廢品將使工廠損失50元,設(shè)一個零件經(jīng)過三道工序加工后最終獲利為元,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),若函數(shù)4個不同的零點,且,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩定點,,點P滿足.

1)求點P的軌跡C的方程;

2)若,直線l與軌跡C交于A,B兩點,的斜率之和為2,問直線l是否恒過定點,若過定點,求出定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線一點,作兩條直線分別交拋物線于,斜率存在且傾斜角互補時

值;

直線上的截距時,面積最大值

查看答案和解析>>

同步練習冊答案