【題目】為了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個(gè)月的健身后,他們的體重情況如三維餅圖(2)所示.對(duì)比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是(

A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變

B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4

C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg

D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg

【答案】D

【解析】

根據(jù)餅圖逐個(gè)選項(xiàng)計(jì)算分析即可.

對(duì)A,易得們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)占比均為,故A正確.

對(duì)B,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了,即人.

B正確.

對(duì)C,因?yàn)榻∩砗?/span>[80kg,90kg)內(nèi)的人數(shù)占,[90kg,100kg)內(nèi)的人數(shù)占,故中位數(shù)位于[90kg,100kg).故C正確.

對(duì)D,易舉出反例若原體重在[110kg,120kg]內(nèi)的肥胖者重量為,減肥后為依然滿足.故D錯(cuò)誤.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的最大值為.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(Ⅲ)當(dāng)時(shí),令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域?yàn)?/span>若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是邊長(zhǎng)為2的正方形,,的中點(diǎn),點(diǎn)上,平面的延長(zhǎng)線上,且.

(1)證明:平面.

(2)過點(diǎn)的平行線,與直線相交于點(diǎn),當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),二面角能否等于?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問題中,1斗為10升,則馬主人應(yīng)償還( )升粟?

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線半徑為的圓與直線相切,圓心軸上且在直線的上方.

1)求圓的方程;

2)設(shè)過點(diǎn) 的直線被圓截得弦長(zhǎng)等于,求直線的方程;

3)過點(diǎn)的直線與圓交于兩點(diǎn)(軸上方),問在軸正半軸上是否存在點(diǎn),使得軸平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為C、D,且過點(diǎn),P是橢圓上異于CD的任意一點(diǎn),直線PCPD的斜率之積為

1)求橢圓的方程;

2O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若對(duì)任意,恒成立,求的取值范圍;

2)若函數(shù)有兩個(gè)不同的零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),圓,點(diǎn)為圓上動(dòng)點(diǎn),線段的垂直平分線交于點(diǎn),記的軌跡為曲線.

1)求曲線的方程;

2)過點(diǎn)作平行直線,分別交曲線于點(diǎn)和點(diǎn)、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動(dòng)弦,直線軸交于點(diǎn),直線與直線的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線與橢圓只有一個(gè)公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案