已知P(5,3)和圓C:(x-1)2+y2=9,點A為直線PC與圓的一個交點(點A、P在圓心C的兩側(cè)),PB為圓的一條切線,切點為B,則
PA
PB
=( 。
A、
8
5
B、
32
5
C、
64
5
D、
128
5
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)向量的數(shù)量積的計算公式,
PA
PB
=|
PA
||PB|cosθ
,θ為向量
PA
,
PB
的夾角,所以根據(jù)條件只要分別求出|
PA
|,|
PB
|,cosθ
即可.
解答: 解:如圖,連接圓心C和切點B,則PB⊥BC,在Rt△PBC中,BC=3,PC=
16+9
=5

∴PB=4,sin∠BPC=
3
5
,cos∠BPC=
4
5
;
又PA=8,則
PA
PB
=8×4×
4
5
=
128
5

故選D.
點評:注意不要去求A,B點的坐標,而只要通過幾何關(guān)系,求出|
PA
|,|
PB
|
即可.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若a5=0,則有等式a1+a2+…+an=a1+a2+…+a9-n(n<9,n∈N*)成立.類比上述性質(zhì):在等比數(shù)列{bn}中,若b6=1,則有等式
 
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關(guān)于向量的命題中,
a
b
=
b
a

a
0
b
0
,
c
0
,則(
a
b
)•
c
=
a
•(
b
c
);
a
b
=
b
c
a
0
b
0
,則
a
=
c

④若
a
0
,
b
0
,且
a
b
,則|
a
+
b
|=|
a
-
b
|.
正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列空間幾何體能較合適作為平面等邊三角形的類比對象的是( 。
A、正四棱錐B、正方體
C、正四面體D、球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x+1
x2+2x+1
x≥0
x<0
的圖象和函數(shù)g(x)=ex的圖象的交點個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個結(jié)論:
①“2a>2b”是“l(fā)og2a>log2b”的充要條件;
②命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實數(shù)根,則m≤0”;
③函數(shù)f(x)=
(x-4)ln(x-2)
x-3
只有1個零點.
其中正確結(jié)論的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以橢圓
x2
8
+
y2
5
=1的焦點為頂點,以橢圓的頂點為焦點的雙曲線的漸近線方程為( 。
A、y=±
3
5
x
B、y=±
5
3
x
C、y=±
15
5
x
D、y=±
15
3
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,則|
AB
|=( 。
A、2
2
B、6
2
C、2
5
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x)=
x2+3,(x∈[0,1))
3-x2,(x∈[-1,0))
,且f(x+2)=f(x),g(x)=
3x+7
x+2
,則方程g(x)=f(x)在區(qū)間[-8,3]上的所有實數(shù)根之和為( 。
A、0B、-10
C、-11D、-12

查看答案和解析>>

同步練習冊答案