為了解七班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 
喜愛(ài)打籃球
不喜愛(ài)打籃球
合計(jì)
男生
 
5
 
女生
10
 
 
合計(jì)
 
 
50
 
已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為.(12分)
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛(ài)打籃球的女生人數(shù)為,求的分布列與期望.
下面的臨界值表供參考:

0.15
0.10
0.05[
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(參考公式:,其中)

(1)列聯(lián)表見(jiàn)解析;(2)在犯錯(cuò)誤的概率不超過(guò)0.005的前提下,認(rèn)為喜愛(ài)打籃球與性別有關(guān);(3)的分布列見(jiàn)解析,期望為.

解析試題分析:(1)喜愛(ài)打籃球的學(xué)生的概率為,則喜愛(ài)打籃球人數(shù)為30,可不喜愛(ài)打籃球的人數(shù)為20,可由表中行可得男生人數(shù),女生人數(shù);(2)可求得查表知不超過(guò)0.005的前提下,認(rèn)為喜愛(ài)打籃球與性別有關(guān);(3)喜愛(ài)打籃球的女生人數(shù)的可能取值為.分別求出概率,得出分布列,求出期望.
試題解析:解:(1) 列聯(lián)表補(bǔ)充如下:       3分

 
喜愛(ài)打籃球
不喜愛(ài)打籃球
合計(jì)
男生
20
5
25
女生
10
15
25
合計(jì)
30
20
50
 
(2)∵ 
∴在犯錯(cuò)誤的概率不超過(guò)0.005的前提下,認(rèn)為喜愛(ài)打籃球與性別有關(guān).        7分
(3)喜愛(ài)打籃球的女生人數(shù)的可能取值為.
其概率分別為,,
的分布列為:








 
的期望值為: 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩袋裝有大小相同的紅球和白球,甲袋裝有2個(gè)紅球,2個(gè)白球;乙袋裝有2個(gè)紅球,n個(gè)白球.現(xiàn)從甲,乙兩袋中各任取2個(gè)球.
(Ⅰ)若n=3,求取到的4個(gè)球全是紅球的概率;
(Ⅱ)若取到的4個(gè)球中至少有2個(gè)紅球的概率為,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了解某班學(xué)生關(guān)注NBA是否與性別有關(guān),對(duì)本班48人進(jìn)行了問(wèn)卷調(diào)查得到如下的列聯(lián)表:

 
關(guān)注NBA
不關(guān)注NBA
合  計(jì)
男   生
 
6
 
女   生
10
 
 
合   計(jì)
 
 
48
 
已知在全班48人中隨機(jī)抽取1人,抽到關(guān)注NBA的學(xué)生的概率為2/3
⑴請(qǐng)將上面列連表補(bǔ)充完整,并判斷是否有的把握認(rèn)為關(guān)注NBA與性別有關(guān)?
⑵現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中關(guān)注NBA的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某家電專(zhuān)賣(mài)店在五一期間設(shè)計(jì)一項(xiàng)有獎(jiǎng)促銷(xiāo)活動(dòng),每購(gòu)買(mǎi)一臺(tái)電視,即可通過(guò)電腦產(chǎn)生一組3個(gè)數(shù)的隨機(jī)數(shù)組,根據(jù)下表兌獎(jiǎng):

獎(jiǎng)次
一等獎(jiǎng)
二等獎(jiǎng)
三等獎(jiǎng)
隨機(jī)數(shù)組的特征
3個(gè)1或3個(gè)0
只有2個(gè)1或2個(gè)0
只有1個(gè)1或1個(gè)0
資金(單位:元)
5m
2m
m
 
商家為了了解計(jì)劃的可行性,估計(jì)獎(jiǎng)金數(shù),進(jìn)行了隨機(jī)模擬試驗(yàn),并產(chǎn)生了20個(gè)隨機(jī)數(shù)組,試驗(yàn)結(jié)果如下:
247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.
(1)在以上模擬的20組數(shù)中,隨機(jī)抽取3組數(shù),至少有1組獲獎(jiǎng)的概率;
(2)根據(jù)以上模擬試驗(yàn)的結(jié)果,將頻率視為概率:
(。┤艋顒(dòng)期間某單位購(gòu)買(mǎi)四臺(tái)電視,求恰好有兩臺(tái)獲獎(jiǎng)的概率;
(ⅱ)若本次活動(dòng)平均每臺(tái)電視的獎(jiǎng)金不超過(guò)260元,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

小王經(jīng)營(yíng)一家面包店,每天從生產(chǎn)商處訂購(gòu)一種品牌現(xiàn)烤面包出售.已知每賣(mài)出一個(gè)現(xiàn)烤面包可獲利10元,若當(dāng)天賣(mài)不完,則未賣(mài)出的現(xiàn)烤面包因過(guò)期每個(gè)虧損5元.經(jīng)統(tǒng)計(jì),得到在某月(30天)中,小王每天售出的現(xiàn)烤面包個(gè)數(shù)及天數(shù)如下表:

售出個(gè)數(shù)
10
11
12
13
14
15
天數(shù)
3
3
3
6
9
6
試依據(jù)以頻率估計(jì)概率的統(tǒng)計(jì)思想,解答下列問(wèn)題:
(1)計(jì)算小王某天售出該現(xiàn)烤面包超過(guò)13個(gè)的概率;
(2)若在今后的連續(xù)5天中,售出該現(xiàn)烤面包超過(guò)13個(gè)的天數(shù)大于3天,則小王決定增加訂購(gòu)量.試求小王增加訂購(gòu)量的概率.
(3)若小王每天訂購(gòu)14個(gè)該現(xiàn)烤面包,求其一天出售該現(xiàn)烤面包所獲利潤(rùn)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

自駕游從A地到B地有甲乙兩條線路,甲線路是A-C-D-B,乙線路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵車(chē)路段.假設(shè)這三條路段堵車(chē)與否相互獨(dú)立.這三條路段的堵車(chē)概率及平均堵車(chē)時(shí)間如表所示.

 
CD段
EF段
GH段
堵車(chē)概率



平均堵車(chē)時(shí)間
(單位:小時(shí))

2
1
 
經(jīng)調(diào)查發(fā)現(xiàn),堵車(chē)概率上變化,上變化.
在不堵車(chē)的情況下,走甲線路需汽油費(fèi)500元,走乙線路需汽油費(fèi)545元.而每堵車(chē)1小時(shí),需多花汽油費(fèi)20元.路政局為了估計(jì)段平均堵車(chē)時(shí)間,調(diào)查了100名走甲線路的司機(jī),得到下表數(shù)據(jù).
堵車(chē)時(shí)間(單位:小時(shí))
頻數(shù)
[0,1]
8
(1, 2]
6
(2, 3]
38
(3, 4]
24
(4, 5]
24
 
(1)求段平均堵車(chē)時(shí)間的值;
(2)若只考慮所花汽油費(fèi)的期望值大小,為了節(jié)約,求選擇走甲線路的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

深圳市某校中學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球(即沒(méi)有用過(guò)的球),3個(gè)是舊球(即至少用過(guò)一次的球).每次訓(xùn)練,都從中任意取出2個(gè)球,用完后放回.
(1)設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)求第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.
(1)求甲以4比1獲勝的概率;
(2)求乙獲勝且比賽局?jǐn)?shù)多于5局的概率;
(3)求比賽局?jǐn)?shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某煤礦發(fā)生透水事故時(shí),作業(yè)區(qū)有若干人員被困.救援隊(duì)從入口進(jìn)入之后有兩條巷道通往作業(yè)區(qū)(如下圖),巷道有三個(gè)易堵塞點(diǎn),各點(diǎn)被堵塞的概率都是;巷道有兩個(gè)易堵塞點(diǎn),被堵塞的概率分別為

(1)求巷道中,三個(gè)易堵塞點(diǎn)最多有一個(gè)被堵塞的概率;
(2)若巷道中堵塞點(diǎn)個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望,并按照"平均堵塞點(diǎn)少的巷道是較好的搶險(xiǎn)路線"的標(biāo)準(zhǔn),請(qǐng)你幫助救援隊(duì)選擇一條搶險(xiǎn)路線,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案