【題目】數(shù)列中,,其中為常數(shù).

(1)成等比數(shù)列,求的值

(2)是否存在,使得數(shù)列為等差數(shù)列?并說明理由

【答案】(1)(2)

【解析】

(1)由已知條件分別計算出的值,然后代入等比數(shù)列中求出結(jié)果

(2)解法1:通過已知條件得到奇數(shù)項和偶數(shù)項都成等差數(shù)列,分別求出其通項公式,由數(shù)列為等差數(shù)列,求出的值;解法2:假設(shè)存在,由數(shù)列為等差數(shù)列,則,計算出通項公式,結(jié)合條件計算出結(jié)果

(1)由可得

所以,

成等比數(shù)列,

所以,即,又,故.

(2)解法1:當時,,,

相減得,

所以是首項為1,公差為的等差數(shù)列,是首項為,公差為的等差數(shù)列,

因此要使得數(shù)列為等差數(shù)列,則,得

即存在,使得數(shù)列為等差數(shù)列.

解法2:假設(shè)存在,使得數(shù)列為等差數(shù)列,則,即,解得,

公差 ,因此,

此時驗證,滿足條件,

即存在,使得數(shù)列為等差數(shù)列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).M是曲線上的動點,將線段OM繞O點順時針旋轉(zhuǎn)得到線段ON,設(shè)點N的軌跡為曲線.以坐標原點O為極點,軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(除極點外),且有定點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村電費收取有以下兩種方案供農(nóng)戶選擇:

方案一:每戶每月收取管理費2元,月用電量不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收取:

方案二:不收取管理費,每度0.58元.

1)求方案一的收費Lx)(元)與用電量x(度)間的函數(shù)關(guān)系.若老王家九月份按方案一繳費35元,問老王家該月用電多少度?

2)老王家該月用電量在什么范圍內(nèi),選擇方案一比選擇方案二好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的值域為_________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求函數(shù)的零點;

)若函數(shù)對任意實數(shù)都有成立,求函數(shù)的解析式;

)若函數(shù)在區(qū)間上的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體中,底面為菱形,,,且平面底面,平面底面

(1)證明:平面;

(2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,若該幾何體的外接球表面積為,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)文”的滿意程度,組織居民給活動打分(分數(shù)為整數(shù).滿分為100分).從中隨機抽取一個容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分數(shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:

(1)算出第三組的頻數(shù).并補全頻率分布直方圖;

(2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;

(2)若當時, 恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案