14.設(shè)函數(shù)y=ax(a>0且a≠1)在[1,2]上的最大值是M,最小值是m,且M=2m,則實(shí)數(shù)a=( 。
A.$\frac{1}{2}$B.2C.$\frac{1}{3}$且2D.$\frac{1}{2}$或2

分析 對(duì)底數(shù)a分類討論,根據(jù)單調(diào)性,即可求得最大值與最小值,列出方程,求解即可得到a的值.

解答 解:①當(dāng)0<a<1時(shí)
函數(shù)y=ax在[1,2]上為單調(diào)減函數(shù)
∴函數(shù)y=ax在[1,2]上的最大值與最小值分別為a=2m,a2=m,
∴2a2=a,解得:a=0(舍)或a=$\frac{1}{2}$,
∴a=$\frac{1}{2}$;
②當(dāng)a>1時(shí)
函數(shù)y=ax在[1,2]上為單調(diào)增函數(shù)
∴函數(shù)y=ax在[1,2]上的最大值與最小值分別為a2=2m,a=m,
∴a2=2m,
∴a=0(舍)或a=2,
∴a=2;
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)最值的應(yīng)用,但解題的關(guān)鍵要注意對(duì)a進(jìn)行討論,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知定義在R上的函數(shù)f(x)=$\frac{x+a}{{{x^2}+1}}$(a∈R)是奇函數(shù),函數(shù)g(x)=$\frac{mx}{2+x}$的定義域?yàn)椋?2,+∞).
(1)求a的值;
(2)若g(x)=$\frac{mx}{2+x}$在(-2,+∞)上單調(diào)遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(3)在(2)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知方程$\frac{{x}^{2}}{k-5}$-$\frac{{y}^{2}}{|k|-2}$=1表示雙曲線,那么k的取值范圍是( 。
A.k>5B.-2<k<2C.k>2或k<-2D.k>5或-2<k<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.按下圖所示的程序框圖運(yùn)算,若輸入x=8,則輸出k=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在數(shù)列{an}中,a1=1,a2=5,an+2=an+1-an,則a2015=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若α,β為銳角,且滿足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{5}{13}$,則sinβ的值為( 。
A.-$\frac{16}{65}$B.$\frac{33}{65}$C.$\frac{56}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合S={x|log0.5(x+2)>log0.2549},P={x|a+1<x<2a+15}.
(1)求集合S;
(2)若S⊆P,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定點(diǎn)A(-1,1),動(dòng)點(diǎn)P在拋物線C:y2=-8x上,F(xiàn)為拋物線C的焦點(diǎn).
(1)求|PA|+|PF|最小值;
(2)求以A為中點(diǎn)的弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列幾個(gè)命題:
①函數(shù)y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函數(shù),但不是奇函數(shù);
②方程x2+(a-3)x+a=0的有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
③f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=2x2+x-1,則x≥0時(shí),f(x)=-2x2+x+1
④函數(shù)y=$\frac{3-{2}^{x}}{{2}^{x}+2}$的值域是(-1,$\frac{3}{2}$).
其中正確命題的序號(hào)有②④.

查看答案和解析>>

同步練習(xí)冊(cè)答案