【題目】已知動圓經(jīng)過點,且動圓軸截得的弦長為4,記圓心的軌跡為曲線.

1)求曲線的標準方程;

2)過軸下方一點向曲線作切線,切點記作,直線交曲線于點,若直線、的斜率乘積為,點在以為直徑的圓上,求點的坐標.

【答案】1;(2.

【解析】

1)設,動圓軸截得的弦長為4,則,從而得到答案.
2)設直線,,,求出過的切線方程,方程聯(lián)立,結合直線、的斜率乘積為,用表示出點的坐標,點在以為直徑的圓上,則,建立關于的方程求解即可.

解:(1)設,則,

,即,

所以曲線的標準方程為:.

2)設直線,,,

,

過點的切線方程為:,

過點的切線方程為:,

聯(lián)立,解得

所以,點,

,

所以點,則又,則,

,直線的方程為,

代入拋物線,可得

在以為直徑的圓上,則

,

,

整理得

所以,點的坐標為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一款小游戲的規(guī)則如下:每輪游戲要進行三次,每次游戲都需要從裝有大小相同的2個紅球,3個白球的袋中隨機摸出2個球,若摸出的兩個都是紅球出現(xiàn)3次獲得200分,若摸出兩個都是紅球出現(xiàn)1次或2次獲得20分,若摸出兩個都是紅球出現(xiàn)0次則扣除10分(即獲得分).

1)設每輪游戲中出現(xiàn)摸出兩個都是紅球的次數(shù)為,求的分布列;

2)玩過這款游戲的許多人發(fā)現(xiàn),若干輪游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了,請運用概率統(tǒng)計的相關知識分析解釋上述現(xiàn)象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,,EF分別為AB,的中點.

1)求證:平面ACF;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱中,平面平面ABC,.

1)證明:;

2)設,,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質量的嚴重問題,為了了解聲音強度(單位:分貝)與聲音能量(單位:)之間的關系,將測量得到的聲音強度和聲音能量=1,2…,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.

45.7

0.51

5.1

表中,

(1)根據(jù)散點圖判斷,哪一個適宜作為聲音強度關于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)表中數(shù)據(jù),求聲音強度關于聲音能量的回歸方程;

(3)當聲音強度大于60分貝時屬于噪音,會產(chǎn)生噪音污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是,且.己知點的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點是否受到噪音污染的干擾,并說明理由.

附:對于一組數(shù)據(jù).其回歸直線的斜率和截距的最小二乘估計分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,若對任意均有成立,求實數(shù)k的取值范圍;

2)設直線與曲線和曲線均相切,切點分別為,,其中.

①求證:

②當時,關于x的不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是偶函數(shù),且當時,

1)當時,求的解析式;

2)設函數(shù)在區(qū)間上的最大值為,試求的表達式;

3)若方程有四個不同的實根,且它們成等差數(shù)列,試探求滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(x+)(A>0>0,0<<)的部分圖象如圖所示,又函數(shù)g(x)=f(x+).

1)求函數(shù)g(x)的單調增區(qū)間;

2)設ABC的內角ABC的對邊分別為abc,又c=,且銳角C滿足g(C)= -1,若sinB=2sinA,,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為慶祝中華人民共和國成立70周年,2019101日晚,金水橋南,百里長街成為舞臺,3290名聯(lián)歡群眾演員跟著音樂的旋律,用手中不時變幻色彩的光影屏,流動著拼組出五星紅旗、祖國萬歲、長城等各式圖案和文字.光影瀲滟間,以《紅旗頌》《我們走在大路上》《在希望的田野上》《領航新時代》四個章節(jié),展現(xiàn)出中華民族從站起來、富起來到強起來的偉大飛躍.在每名演員的手中都有一塊光影屏,每塊屏有1024顆燈珠,若每個燈珠的開、關各表示一個信息,則每塊屏可以表示出不同圖案的個數(shù)為(

A.2048B.C.D.

查看答案和解析>>

同步練習冊答案