P是橢圓上的點,F(xiàn)1,F(xiàn)2是它的焦點,∠PF1F2=75°,∠PF2F1=15°,則橢圓的焦距與長軸長之比為( 。
A、
6
3
B、
2
2
C、
3
2
D、
2
3
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:依題意,△PF1F2為直角三角形,設(shè)|PF1|=m,|PF2|=n,可求得m,n與c的關(guān)系,從而可求橢圓的焦距與長軸長之比.
解答: 解:∵,∠PF1F2=75°,∠PF2F1=15°,
∴,△PF1F2為直角三角形,∠F1PF2=90°,
設(shè)|PF1|=m,|PF2|=n,|F1F2|=2c,
則m=2csin75°,n=2csin15°,
又|PF1|+|PF2|=m+n=2a
∴2csin15°+2csin75°=2a,
∴橢圓的焦距與長軸長之比即e=
c
a
=
1
sin15°+sin75°
=
6
3

故選:A.
點評:本題考查橢圓的簡單性質(zhì),求得|PF1|、|PF2|與|F1F2|之間的關(guān)系是關(guān)鍵,考查分析與運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

指出下列命題中,p是q的什么條件:
(1)p:{x|x>-2或x<3};q:{x|x2-x-6<0}.
(2)p:-2<m<0,0<n<1;q:關(guān)于x的方程x2+mx+n=0有兩個小于1的正根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線Γ:y2=4x的焦點為F,P是Γ的準線上一點,Q是直線PF與Γ的一個交點.若
PQ
=
2
QF
,則直線PF的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosx,2sinx),
b
=(
3
sinx,-sinx),
c
=(-1,
3
),其中x∈R.
(Ⅰ)當
a
b
時,求x值的集合;
(Ⅱ)當x∈[0,π]時,求|
a
-
c
|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠B=
5
12
π,D是BC邊上任意一點(D與B、C不重合),且
AC
2+
BC
2-
AD
2=
BD
DC
-2
AC
CB

,則∠A等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布直方圖如圖所示.(1)求a,b,c,d;(2)該校決定在成績較好的3,4,5組用分層抽樣抽取6名學生進行面試,則每組應各抽多少名學生?
組別成績人數(shù)頻率
1[75,80)50.05
2[80,85)350.35
3[85,90)ab
4[90,95)cd
5[95,100]100.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=2cos2xsin2x-sin2x+
1
2
cos4x.
(1)f(x)的最小正周期及最大值;
(2)x∈(
π
2
,π),且f(x)=
2
2
,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是△ABC所在平面內(nèi)一點,且|
OC
|2+|
AB
|2=|
OB
|2+|
.
AC
|2=|
OA
|2+|
BC
|2,則O是△ABC的( 。
A、內(nèi)心B、垂心C、外心D、重心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有四個男生和三個女生排成一排,按下列要求各有多少種不同的排法?甲不在排頭,乙不在排尾.

查看答案和解析>>

同步練習冊答案