用二分法求函數(shù)f(x)=x3+x2-2x-2的一個(gè)零點(diǎn),依次計(jì)算得到如表函數(shù)值:
f(1)=-2f(1.5)=0.625
f(1.25)=-0.984f(1.375)=-0.260
f(1.438)=0.165f(1.4065)=-0.052
那么方程x3+x2-2x-2=0的一個(gè)近似根在下列哪兩數(shù)之間(  )
A、1.25~1.375
B、1.375~1.4065
C、1.4065~1.438
D、1.438~1.5
考點(diǎn):二分法求方程的近似解
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件利用函數(shù)零點(diǎn)的判定定理求得函數(shù)f(x)的零點(diǎn)所在的區(qū)間,即可得到方程x3+x2-2x-2=0的一個(gè)零點(diǎn)所在的區(qū)間.
解答: 解:由題意可得函數(shù)f(x)=x3+x2-2x-2為連續(xù)函數(shù),且f(1.438)>0,f(1.4065)<0,
根據(jù)函數(shù)零點(diǎn)的判定定理可得函數(shù)的零點(diǎn)所在的區(qū)間為(1.4065,1.438),
即方程x3+x2-2x-2=0的一個(gè)零點(diǎn)所在的區(qū)間為(1.4065,1.438),
故選:C.
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)的判定定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈[1,2],x2-a≥0,命題q:?x∈R使x2+2ax+2-a=0,若命題“p且q”為真,則實(shí)數(shù)a的取值范圍是( 。
A、{a|-1<a<1或a>1}
B、{a|a≥1}
C、{a|-2≤a≤1}
D、{a|a≤-2或a=1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0<b<a<1,則下列不等式成立的是( 。
A、ab<b2<1
B、log 
1
2
1
b
>log 
1
2
1
a
C、2b<2a<2
D、a2<ab<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=1,an=
an-1
1+an-1

(1)求a2、a3、a4、a5;猜想數(shù)列的通項(xiàng)公式an
(2)設(shè)bn={anan+1},求數(shù)列{bn}的前n項(xiàng)和Sn
18或者換成數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
1
3
(an-1).
(1)證明:數(shù)列{an}是等比數(shù)列;  (2)求an及Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:x+
3
y-3=0,該直線的傾斜角為(  )
A、150°B、120°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)=lg(x2-x-2)的定義域?yàn)榧螦,函數(shù)g(x)=
3-|x|
的定義域?yàn)榧螧.
(1)求A∩B;
(2)若C={x|(x+2-p)(x+2+p)<0,p>0},且C⊆(A∩B)求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1a6=21,S6=66.求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人進(jìn)行了八十一回合的某類型球賽,兩人先抽簽決定第一回合的發(fā)球權(quán),之后的回合則由兩人輪流發(fā)球,比賽結(jié)果甲以2:1的比率獲勝,且在八十一回合中,共有四十一回合不是發(fā)球者獲勝.請(qǐng)問(wèn)第一回合的發(fā)球者在所有他發(fā)球的回合中共贏了幾回合?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn)x1、x2,(x1<x2
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)求證:f(x1)<0,f(x2)>-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案