在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),滿(mǎn)足AE∶EB=CF∶FA=CP∶PB=1∶2(如圖甲).將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖乙)
(Ⅰ)求證:A1E⊥平面BEP;
(Ⅱ)求直線A1E與平面A1BP所成角的大;
(Ⅲ)求二面角B-A1P-F的大小(用反三角函數(shù)表示)
解法一:不妨設(shè)正三角形ABC的邊長(zhǎng)為3 在下圖中,取BE中點(diǎn)D,連結(jié)DF.AE∶EB=CF∶FA=1∶2∴AF=AD=2而∠A=60°,∴△ADF是正三角形,又AE=DE=1,∴EF⊥AD在圖2中,A1E⊥EF,BE⊥EF,∴∠A1EB為二面角A1-EF-B的平面角.由題設(shè)條件知此二面角為直二面角,A1E⊥BE,又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP. 在下圖中,A1E不垂直A1B,∴A1E是平面A1BP的垂線,又A1E⊥平面BEP, ∴A1E⊥BE.從而B(niǎo)P垂直于A1E在平面A1BP內(nèi)的射影(三垂線定理的逆定理)設(shè)A1E在平面A1BP內(nèi)的射影為A1Q,且A1Q交BP于點(diǎn)Q,則∠E1AQ就是A1E與平面A1BP所成的角,且BP⊥A1Q.在△EBP中,BE=EP=2而∠EBP=60°,∴△EBP是等邊三角形.又A1E⊥平面BEP,∴A1B=A1P,∴Q為BP的中點(diǎn),且,又A1E=1,在Rt△A1EQ中,,∴∠EA1Q=60°, ∴直線A1E與平面A1BP所成的角為60° (3)在下圖中,過(guò)F作FM⊥A1P與M,連結(jié)QM,QF,∵CP=CF=1, ∠C=60°,∴△FCP是正三角形,∴PF=1.有 ∴PF=PQ ①, ∵A1E⊥平面BEP, ∴A1E=A1Q, ∴△A1FP≌△A1QP從而∠A1PF=∠A1PQ、冢 由①②及MP為公共邊知△FMP≌△QMP, ∴∠QMP=∠FMP=90°,且MF=MQ, 從而∠FMQ為二面角B-A1P-F的平面角. 在Rt△A1QP中,A1Q=A1F=2,PQ=1,又∴. ∵M(jìn)Q⊥A1P ∴ ∴在△FCQ中,F(xiàn)C=1,QC=2,∠C=60°,由余弦定理得 在△FMQ中, ∴二面角B-A1P-F的大小為 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
AE |
EB |
CF |
FA |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com