【題目】已知函數(shù)且滿足條件:①;②.
(1)求的表達(dá)式;
(2)當(dāng)時(shí),證明:;
(3)若函數(shù),討論在上的零點(diǎn)個(gè)數(shù).
【答案】(1)(2)見解析(3)見解析.
【解析】
(1)因?yàn)?/span>,圖像關(guān)于成中心對(duì)稱,是奇函數(shù),圖像關(guān)于(0,0)成中心對(duì)稱,故,求解
(2)由三角函數(shù)線的定義直接證明。
(3)先設(shè),轉(zhuǎn)化為二次函數(shù)的零點(diǎn)問題,對(duì)值進(jìn)行分類討論:當(dāng), ,。
:(1)因?yàn)?/span>是奇函數(shù),圖像關(guān)于(0,0)成中心對(duì)稱,
又因?yàn)?/span>,圖像關(guān)于成中心對(duì)稱,
則,即,且,故,
(另:,則)
又,即,故,綜上。
(2)當(dāng),,設(shè),即證,
如圖:在單位圓中,由三角函數(shù)線知,
則在中,,
即,所以。(另:也可以利用證明!)
(3)設(shè),,注意到,,
當(dāng)時(shí),得,即,則有2018個(gè)零點(diǎn);
當(dāng)時(shí),令得,
則有 個(gè)零點(diǎn);
當(dāng)時(shí),令得,
則有個(gè)零點(diǎn);
當(dāng)時(shí),令得,
則有個(gè)零點(diǎn);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的左右焦點(diǎn)分別為F1,F2,離心率為,過點(diǎn)F1且垂直于x軸的直線被橢圓截得的弦長為,直線l:y=kx+m與橢圓交于不同的A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q滿足: (O為坐標(biāo)原點(diǎn)).求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸且單位長度相同的極坐標(biāo)系中曲線C1:ρ=1, (t為參數(shù)).
(Ⅰ)求曲線C1上的點(diǎn)到曲線C2距離的最小值;
(Ⅱ)若把C1上各點(diǎn)的橫坐標(biāo)都擴(kuò)大為原來的2倍,縱坐標(biāo)擴(kuò)大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2與 交于A,B兩點(diǎn),求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級(jí)如下表:
現(xiàn)對(duì)某城市30天的空氣質(zhì)量進(jìn)行監(jiān)測(cè),獲得30個(gè)API數(shù)據(jù)(每個(gè)數(shù)據(jù)均不同),統(tǒng)計(jì)繪得頻率分布直方圖如圖.
(1)請(qǐng)由頻率分布直方圖來估計(jì)這30天API 的平均值;
(2)若從獲得的“空氣質(zhì)量優(yōu)”和“空氣質(zhì)量中重度污染” 的數(shù)據(jù)中隨機(jī)選取個(gè)數(shù)據(jù)進(jìn)行復(fù)查,求“空氣質(zhì)量優(yōu)”和“空氣質(zhì)量中重度污染”數(shù)據(jù)恰均被選中的概率;
(3)假如企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元)與空氣質(zhì)量指數(shù)API (記為)的關(guān)系式為,
若將頻率視為概率,在本年內(nèi)隨機(jī)抽取一天,試估計(jì)這天的經(jīng)濟(jì)損失S不超過600元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) ,點(diǎn)P是圓 上的任意一點(diǎn),設(shè)Q為該圓的圓心,并且線段PA的垂直平分線與直線PQ交于點(diǎn)E.
(1)求點(diǎn)E的軌跡方程;
(2)已知M,N兩點(diǎn)的坐標(biāo)分別為(﹣2,0),(2,0),點(diǎn)T是直線x=4上的一個(gè)動(dòng)點(diǎn),且直線TM,TN分別交(1)中點(diǎn)E的軌跡于C,D兩點(diǎn)(M,N,C,D四點(diǎn)互不相同),證明:直線CD恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為矩形,且平面, ,為的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積;
(3)探究在上是否存在點(diǎn),使得平面,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對(duì)于任意的實(shí)數(shù)都有成立,且當(dāng)時(shí)<0恒成立.
(1)判斷函數(shù)的奇偶性;
(2)若=-2,求函數(shù)在上的最大值;
(3)求關(guān)于的不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說法不正確的是
A. 該幾何體是由兩個(gè)同底的四棱錐組成的幾何體
B. 該幾何體有12條棱、6個(gè)頂點(diǎn)
C. 該幾何體有8個(gè)面,并且各面均為三角形
D. 該幾何體有9個(gè)面,其中一個(gè)面是四邊形,其余均為三角形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com