15.已知集合A={x|1<x≤5},B={x|log2x≥1},則A∩B=( 。
A.{x|2≤x≤5}B.{x|1<x≤2}C.{x|1<x≤3}D.{x|1<x≤5}

分析 運用對數(shù)函數(shù)的單調(diào)性化簡集合B,再由交集定義即可得到.

解答 解:集合A={x|1<x≤5},
B={x|log2x≥1}={x|x≥2},
則A∩B={x|2≤x≤5}.
故選:A.

點評 本題考查集合的運算,主要是交集的定義,同時考查對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合U={1,2,3,4,5}為全集,A={1,2,3},B={2,5},則(∁UB)∩A=( 。
A.{2}B.{2,3}C.{3}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.為了得到$y=3sin({2x+\frac{π}{3}})$函數(shù)的圖象,只需把y=3sinx上所有的點( 。
A.先把橫坐標縮短到原來的$\frac{1}{2}$倍,然后向左平移$\frac{π}{6}$個單位
B.先把橫坐標縮短到原來的2倍,然后向左平移$\frac{π}{6}$個單位
C.先把橫坐標縮短到原來的2倍,然后向左右移$\frac{π}{3}$個單位
D.先把橫坐標縮短到原來的$\frac{1}{2}$倍,然后向右平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在Rt△ABC中,∠A=90°,AB=AC=1,點E是AB的中點,點D滿足$\overrightarrow{CD}=\frac{2}{3}\overrightarrow{CB}$,則$\overrightarrow{CE}•\overrightarrow{AD}$=$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若曲線y=x3的切線方程為y=kx+2,則k=( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)是偶函數(shù)的是( 。
A.y=1-lg|x|B.$y=lg\frac{x-1}{x+1}$C.$y=\frac{x+1}{x-1}-\frac{x-1}{x+1}$D.$y=\frac{|x|}{x+1}+\frac{|x|}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)集合A={x|x=2k-1,k∈Z},B={x|x=2k+1,k∈N,且k<3},則A∩B={1,3,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\frac{1}{2}ln(x+\frac{1}{4})$,$g(x)=ln(2x-\frac{1}{2}+t)$,若f(x)≤g(x)在區(qū)間[0,1]上恒成立,則( 。
A.實數(shù)t有最小值1B.實數(shù)t有最大值1C.實數(shù)t有最小值$\frac{1}{2}$D.實數(shù)t有最大值$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的首項為1,數(shù)列{bn}為等比數(shù)列,且${b_n}=\frac{{{a_{n+1}}}}{a_n},{b_6}•{b_9}=2$,則a15=128.

查看答案和解析>>

同步練習(xí)冊答案