【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿場售價(jià)與上市時(shí)間的關(guān)系如圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系如圖二的拋物線段表示.
(1)寫出圖一表示的市場售價(jià)與時(shí)間的函數(shù)關(guān)系式p=f(t);寫出圖二表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q=g(t);
(2)認(rèn)定市場售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿純收益最大?(注:市場售價(jià)各種植成本的單位:元/102㎏,時(shí)間單位:天)
【答案】解:(1)由圖一可得市場售價(jià)與時(shí)間的函數(shù)關(guān)系為f(t)=
由圖二可得種植成本與時(shí)間的函數(shù)關(guān)系為.
(2)設(shè)t時(shí)刻的純收益為h(t),則由題意得h(t)=f(t)﹣g(t),
即h(t)=
當(dāng)0≤t≤200時(shí),配方整理得h(t)=-.
所以,當(dāng)t=50時(shí),h(t)取得區(qū)間[0,200]上的最大值100;
當(dāng)200<t≤300時(shí),配方整理得h(t)=-,
所以,當(dāng)t=300時(shí),h(t)取得區(qū)間(200,300)上的最大值87.5(10分)、
綜上,由100>87.5可知,h(t)在區(qū)間[0,300]上可以取得最大值100,此時(shí)t=50,
即從二月一日開始的第50天時(shí),上市的西紅柿純收益最大.
【解析】(1)觀察圖一可知此函數(shù)是分段函數(shù)(0,200)和(200,300)的解析式不同,分別求出各段解析式即可;第二問觀察函數(shù)圖象可知此圖象是二次函數(shù)的圖象根據(jù)圖象中點(diǎn)的坐標(biāo)求出即可.
(2)要求何時(shí)上市的西紅柿純收益最大,先用市場售價(jià)減去種植成本為純收益得到t時(shí)刻的純收益h(t)也是分段函數(shù),分別求出各段函數(shù)的最大值并比較出最大即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)及橢圓,過點(diǎn)的動(dòng)直線與橢圓相交于, 兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(2)設(shè)點(diǎn)的坐標(biāo)為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價(jià)格y和房屋的面積x的數(shù)據(jù)
房屋面積(平方米) | 115 | 110 | 80 | 135 | 105 |
銷售價(jià)格(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出散點(diǎn)圖
(2)求線性回歸方程
(3)根據(jù)(2)的結(jié)果估計(jì)房屋面積為150平方米時(shí)的銷售價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合,且兩個(gè)坐標(biāo)系的單位長度相同.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為.
(Ⅰ)若直線l的斜率為-1,求直線l與曲線C交點(diǎn)的極坐標(biāo);
(Ⅱ)若直線l與曲線C相交弦長為,求直線l的參數(shù)方程(標(biāo)準(zhǔn)形式).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若,求函數(shù)的極值;
設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
若在區(qū)間上不存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報(bào)是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實(shí)際經(jīng)驗(yàn),經(jīng)過分析推斷得到的,在現(xiàn)實(shí)的生產(chǎn)生活中有著重要的意義.某快餐企業(yè)的營銷部門經(jīng)過對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨天數(shù)和降雨量的大小有關(guān).
(Ⅰ)天氣預(yù)報(bào)說,在今后的四天中,每一天降雨的概率均為,求四天中至少有兩天降雨的概率;
(Ⅱ)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計(jì)了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:
降雨量(毫米) | 1 | 2 | 3 | 4 | 5 |
快餐數(shù)(份) | 50 | 85 | 115 | 140 | 160 |
試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不造成過多浪費(fèi),預(yù)測降雨量為6毫米時(shí)需要準(zhǔn)備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))
附注:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,
(1)求證:AD1⊥平面CDA1B1;
(2)求直線AD1與直線BD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)棱底面, , , 是棱的中點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,且),,(其中為的導(dǎo)函數(shù)).
(1)當(dāng)時(shí),求的極大值點(diǎn);
(2)討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com