【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當(dāng)時,圖象是線段,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.
(Ⅰ)試求的函數(shù)關(guān)系式;
(Ⅱ)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.
【答案】(Ⅰ);(Ⅱ)在時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳,理由見解析
【解析】
(I)當(dāng)時,利用二次函數(shù)頂點式求得函數(shù)解析式,當(dāng)時,一次函數(shù)斜截式求得函數(shù)解析式.由此求得的函數(shù)關(guān)系式.
(II)利用分段函數(shù)解析式解不等式,由此求得學(xué)習(xí)效果最佳的時間段.
(Ⅰ)當(dāng)時,設(shè),過點代入得,則,
當(dāng)時,設(shè),過點、,
得,即,則函數(shù)關(guān)系式為.
(Ⅱ)由題意,或,.
得或,∴.則老師就在時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有一面積為12000平方米的三角形地塊,其中邊長為200米,現(xiàn)計劃建一個如圖所示的長方形停車場,停車場的四個頂點都在的三條邊上,其余的地面全部綠化.若建停車場的費用為180元/平方米,綠化的費用為60元/平方米,設(shè)米,建設(shè)工程的總費用為元.
(1)求關(guān)于的函數(shù)表達(dá)式:
(2)求停車場面積最大時的值,并求此時的工程總費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求曲線在點處的切線方程.
(Ⅱ)當(dāng)時,若曲線上的點都在不等式組所表示的平面區(qū)域內(nèi),試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓
(1)若圓、相交,求的取值范圍;
(2)若圓與直線相交于、兩點,且,求的值;
(3)已知點,圓上一點,圓上一點,求的最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是直線上一動點,PA、PB是圓的兩條切線,A、B為切點,若四邊形PACB面積的最小值是2,則的值是
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù))滿足,且.
(1)求函數(shù)的解析式;
(2) 令,求函數(shù)在∈[0,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖象先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式,并求的對稱中心;
(2)若關(guān)于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com