【題目】 如圖所示,△ABC為正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中點.
(1)求證:DE=DA;
(2)求證:平面BDM⊥平面ECA;
【答案】(1)見解析(2)見解析
【解析】
試題(1)證線段相等,實質證垂直:AE⊥DM, 取AC的中點N,易得四邊形DBNM為平行四邊形,而由線面垂直判定定理可得BN⊥平面ECA.因此DM⊥平面ECA.即AE⊥DM,(2)由(1)得DM⊥平面ECA,所以根據面面垂直判定定理得平面BDM⊥平面ECA
試題解析:(1)取EC的中點F,連接DF.
∵CE⊥平面ABC,
∴CE⊥BC.易知DF∥BC,∴CE⊥DF.
∵BD∥CE,∴BD⊥平面ABC.
在Rt△EFD和Rt△DBA中,
EF=CE=DB,DF=BC=AB,
∴Rt△EFD≌Rt△DBA.故DE=DA.
(2)取AC的中點N,連接MN、BN,則MN//CF.
∵BD//CF,∴MN//BD,
∴N∈平面BDM.
∵EC⊥平面ABC,∴EC⊥BN.
又∵AC⊥BN,EC∩AC=C,∴BN⊥平面ECA.
又∵BN平面BDM,∴平面BDM⊥平面ECA.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐E-ABCD中,平面ABCD,,,.
(1)求證:平面BDE;
(2)當幾何體ABCE的體積等于時,求四棱錐E-ABCD的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線,.
(1)若直線,分別經過定點,,求定點,的坐標;
(2)是否存在一個定點,使得與的交點到定點的距離為定值?如果存在,求出定點的坐標及定值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數圖象相鄰兩條對稱軸之間的距離為,將函數的圖象向左平移個單位,得到的圖象關于軸對稱,則( )
A. 函數的周期為 B. 函數圖象關于點對稱
C. 函數圖象關于直線對稱 D. 函數在上單調
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國有一道古典數學名著——兩鼠穿墻:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻(連線與墻面垂直),大老鼠第一天進一尺,以后每天加倍,小老鼠第一天也進一尺,以后每天減半,那么兩鼠第幾天能見面.”假設墻厚16尺,如圖是源于該題思想的一個程序框圖,則輸出的( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com