【題目】已知點是拋物線的焦點,點是拋物線上的定點,且.
求拋物線的方程;
直線與拋物線交于不同兩點,,直線AB與切線l平行,設(shè)切點為N點,試問的面積是否是定值,若是,求出這個定值;若不是,請說明理由.
【答案】(1)(2)見解析
【解析】
(1)設(shè)出點M和F的坐標(biāo),根據(jù)向量坐標(biāo)化得到,進(jìn)而得到點M的坐標(biāo),代入拋物線可得到方程;(2)的中點為,聯(lián)立直線AB和拋物線方程,得到,聯(lián)立切線和拋物線得到切點的坐標(biāo)為,,進(jìn)而得到軸,,結(jié)合得到,.
設(shè),由題知,
所以
所以即
代入中得,解得
所以拋物線的方程為
有題意知,直線的斜率存在,設(shè)其方程為
由消去,整理得
則
設(shè)的中點為,
則點的坐標(biāo)為
由條件設(shè)切線方程為
由消去,整理得
直線與拋物線相切,
.
切點的坐標(biāo)為,
軸,
又
的面積為定值,且定值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:的焦點為F1(–1、0),
F2(1,0).過F2作x軸的垂線l,在x軸的上方,l與圓F2:交于點A,與橢圓C交于點D.連結(jié)AF1并延長交圓F2于點B,連結(jié)BF2交橢圓C于點E,連結(jié)DF1.已知DF1=.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求點E的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點為F,圓,點為拋物線上一動點.已知當(dāng)的面積為.
(I)求拋物線方程;
(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值,并求出此時P點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣畜牧技術(shù)員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量單位:萬只與相應(yīng)年份序號的數(shù)據(jù)表和散點圖如圖所示,根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)單位:個關(guān)于x的回歸方程.
年份序號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養(yǎng)殖山羊萬只 |
根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關(guān)于x的線性回歸方程參考統(tǒng)計量:,;
試估計:該縣第一年養(yǎng)殖山羊多少萬只
到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C:x2=6y與直線l:y=kx+3交于M,N兩點.
(1)設(shè)M,N到y(tǒng)軸的距離分別為d1,d2,證明:d1d2為定值.
(2)y軸上是否存在點P,使得當(dāng)k變動時,總有∠OPM=∠OPN?若存在,求以線段OP為直徑的圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面,為邊上一點,,.
(1)證明:平面平面.
(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為的三內(nèi)角A,B,C的對邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項和為,且.
(1)求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com