【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).

(1)求證:平面

(2)當(dāng)側(cè)面是正方形,且時(shí),

(。┣蠖娼的大。

(ⅱ)在線段上是否存在點(diǎn),使得?若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)見(jiàn)解析(2)(。(ⅱ)點(diǎn)在點(diǎn)處時(shí),有

【解析】

(1)取中點(diǎn),證明四邊形是平行四邊形,可得從而得證;

(2)(ⅰ)先證明平面為原點(diǎn)建立空間直角坐標(biāo)系,求出平面與平面的法向量,即可得到二面角的大。

(ⅱ)假設(shè)在線段上存在點(diǎn),使得. 設(shè),則.

利用垂直關(guān)系,建立的方程,解之即可.

證明:(1)取中點(diǎn),連,連.

在△中,因?yàn)?/span>分別是中點(diǎn),

所以,且.

在平行四邊形中,因?yàn)?/span>的中點(diǎn),

所以,且.

所以,且.

所以四邊形是平行四邊形.

所以.

又因?yàn)?/span>平面,平面

所以平面.

(2)因?yàn)閭?cè)面是正方形,所以.

又因?yàn)槠矫?/span>平面,且平面平面

所以平面.所以.

又因?yàn)?/span>,以為原點(diǎn)建立空間直角坐標(biāo)系,如圖所示.

設(shè),則

.

(。┰O(shè)平面的一個(gè)法向量為.

,所以.

又因?yàn)?/span>平面,所以是平面的一個(gè)法向量.

所以.

由圖可知,二面角為鈍角,所以二面角的大小為.

(ⅱ)假設(shè)在線段上存在點(diǎn),使得.

設(shè),則.

因?yàn)?/span>

,

所以.

所以.

故點(diǎn)在點(diǎn)處時(shí),有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn),,且橢圓過(guò)點(diǎn),,且是橢圓上位于第一象限的點(diǎn),且的面積.

1)求點(diǎn)的坐標(biāo);

2)過(guò)點(diǎn)的直線與橢圓相交于點(diǎn),,直線,軸相交于兩點(diǎn),點(diǎn),則是否為定值,如果是定值,求出這個(gè)定值,如果不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),過(guò)點(diǎn)作與軸平行的直線交函數(shù)的圖像于點(diǎn),過(guò)點(diǎn)圖像的切線交軸于點(diǎn),則面積的最小值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,點(diǎn)在橢圓上,橢圓的離心率是.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn),為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線斜率分別為,若,請(qǐng)判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某日A,B,C三個(gè)城市18個(gè)銷(xiāo)售點(diǎn)的小麥價(jià)格如下表:

銷(xiāo)售點(diǎn)序號(hào)

所屬城市

小麥價(jià)格(元/噸)

銷(xiāo)售點(diǎn)序號(hào)

所屬城市

小麥價(jià)格(元/噸)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(1)甲以B市5個(gè)銷(xiāo)售點(diǎn)小麥價(jià)格的中位數(shù)作為購(gòu)買(mǎi)價(jià)格,乙從C市4個(gè)銷(xiāo)售點(diǎn)中隨機(jī)挑選2個(gè)了解小麥價(jià)格.記乙挑選的2個(gè)銷(xiāo)售點(diǎn)中小麥價(jià)格比甲的購(gòu)買(mǎi)價(jià)格高的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望;

(2)如果一個(gè)城市的銷(xiāo)售點(diǎn)小麥價(jià)格方差越大,則稱(chēng)其價(jià)格差異性越大.請(qǐng)你對(duì)A,B,C三個(gè)城市按照小麥價(jià)格差異性從大到小進(jìn)行排序(只寫(xiě)出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是由正整數(shù)組成的無(wú)窮數(shù)列,對(duì)任意,滿足如下兩個(gè)條件:①的倍數(shù);②.

(1)若,,寫(xiě)出滿足條件的所有的值;

(2)求證:當(dāng)時(shí),

(3)求所有可能取值中的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在中, , , 的平分線,點(diǎn)在線段上, .如圖2所示,將沿折起,使得平面平面,連結(jié),設(shè)點(diǎn)的中點(diǎn).

圖1 圖2

(1)求證: 平面;

(2)在圖2中,若平面,其中為直線與平面的交點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù))是定義域?yàn)?/span>的奇函數(shù).

(1)若,試求不等式的解集;

(2)若,且,求上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案