【題目】設(shè)函數(shù)(且)是定義域?yàn)?/span>的奇函數(shù).
(1)若,試求不等式的解集;
(2)若,且,求在上的最小值.
【答案】(Ⅰ)
(Ⅱ)-2
【解析】
首先利用奇函數(shù)求得的值.(1)根據(jù)求得,由此求得函數(shù)是單調(diào)遞增函數(shù),再根據(jù)函數(shù)的奇偶性和單調(diào)性求得不等式的解集.(2)利用求得的值.由此求得函數(shù)的解析式.在利用換元法以及配方法求得函數(shù)在給定區(qū)間上的最小值.
∵f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,∴k-1=0,∴k=1.
(1)∵f(1)>0,∴a->0,又a>0且a≠1,∴a>1.∵k=1,∴f(x)=ax-a-x,當(dāng)a>1時(shí),y=ax和y=-a-x在R上均為增函數(shù),∴f(x)在R上為增函數(shù),原不等式可化為f(x2+2x)>f(4-x),∴x2+2x>4-x,即x2+3x-4>0,∴x>1或x<-4,∴不等式的解集為{x|x>1或x<-4}.
(2)∵f(1)=,∴a-=,即2a2-3a-2=0.∴a=2或a=- (舍去),∴g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x)2-4(2x-2-x)+2,令t=h(x)=2x-2-x(x≥1),則g(t)=t2-4t+2.∵t=h(x)在[1,+∞)上為增函數(shù)(由(1)可知),∴h(x)≥h(1)=,即t≥,g(t)=t2-4t+2=(t-2)2-2,t∈.∴當(dāng)t=2時(shí),g(t)取得最小值-2,即g(x)取得最小值-2,此時(shí)x=log2(1+),故當(dāng)x=log2(1+)時(shí),g(x)有最小值-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).
(1)求證:平面;
(2)當(dāng)側(cè)面是正方形,且時(shí),
(ⅰ)求二面角的大。
(ⅱ)在線段上是否存在點(diǎn),使得?若存在,指出點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)在曲線上取兩點(diǎn),與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長度,再向下平移1個(gè)單位,得到函數(shù)的圖像.
(1)當(dāng)時(shí),求的值域
(2)令,若對任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C三地有直道相通,其中AB、BC為步行道,AC為機(jī)動(dòng)車道,已知A在B的正北方向6千米處,C在B的正東方向千米處,某校開展步行活動(dòng),從A地出發(fā),經(jīng)B地到達(dá)C地,中途不休息.
(1)媒體轉(zhuǎn)播車從A出發(fā),沿AC行至點(diǎn)P處,此時(shí),求PB的距離;
(2)媒體記者隨隊(duì)步行,媒體轉(zhuǎn)播車從A地沿AC前往C,兩者同時(shí)出發(fā),步行的速度為6千米/小時(shí),為配合轉(zhuǎn)播,轉(zhuǎn)播車的速度為12千米/小時(shí),記者和轉(zhuǎn)播車通過專用對講機(jī)保持聯(lián)系,轉(zhuǎn)播車開到C地后原地等待,直到記者到達(dá)C地,若對講機(jī)的有效通話距離不超過9千米,求他們通過對講機(jī)能保持聯(lián)系的總時(shí)長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若不等式在時(shí)恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了激勵(lì)業(yè)務(wù)員的積極性,對業(yè)績在60萬到200萬的業(yè)務(wù)員進(jìn)行獎(jiǎng)勵(lì)獎(jiǎng)勵(lì)方案遵循以下原則:獎(jiǎng)金y(單位:萬元)隨著業(yè)績值x(單位:萬元)的增加而增加,且獎(jiǎng)金不低于1.5萬元同時(shí)獎(jiǎng)金不超過業(yè)績值的5%.
(1)若某業(yè)務(wù)員的業(yè)績?yōu)?/span>100萬核定可得4萬元獎(jiǎng)金,若該公司用函數(shù)(k為常數(shù))作為獎(jiǎng)勵(lì)函數(shù)模型,則業(yè)績200萬元的業(yè)務(wù)員可以得到多少獎(jiǎng)勵(lì)?(已知,)
(2)若采用函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形的各邊上分別取四點(diǎn),使,將正方形沿對角線折起,如圖②
(1)證明:圖②中為矩形;
(2)當(dāng)二面角為多大時(shí),為正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com