【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)首先求函數(shù)的導函數(shù),然后分a>0, a<0兩種情況進行分類求函數(shù)的單調(diào)區(qū)間;
(2),即,
令,研究函數(shù)的單調(diào)性與最值即可.
解:(1)依題意,
當時,令,得或,令,得,
可知的增區(qū)間為,,減區(qū)間為;
當時,令,得,令,得或,
可知的增區(qū)間為,減區(qū)間為,.
綜上,當時,的增區(qū)間為,,減區(qū)間為;
當時,的增區(qū)間為,減區(qū)間為,.
(2),即,
令, 則,
令,則.
①若,當時,,從而在上單調(diào)遞增,
因為,故當時,,即,
從而在上單調(diào)遞增,因為,
故當時,恒成立,符合題意;
②若,當時,恒成立,從而在上單調(diào)遞減,
則,即時,,
從而在上單調(diào)遞減,此時,不符合題意;
③若,由,得,當時,,故在上單調(diào)遞減,則,即,
故在上單調(diào)遞減,故當時,,不符合題意;
綜上所述,實數(shù)的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】如圖1所示,在中, , , , 為的平分線,點在線段上, .如圖2所示,將沿折起,使得平面平面,連結(jié),設(shè)點是的中點.
圖1 圖2
(1)求證: 平面;
(2)在圖2中,若平面,其中為直線與平面的交點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是R上的奇函數(shù),m、n是常數(shù).
(1)求m,n的值;
(2)判斷的單調(diào)性并證明;
(3)不等式對任意恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).
(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?
(2)以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,已知直線的極坐標方程為.若上的點對應的參數(shù)為,點在上,點為的中點,求點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓外的有一點,過點作直線.
(1)當直線過圓心時,求直線的方程;
(2)當直線與圓相切時,求直線的方程;
(3)當直線的傾斜角為時,求直線被圓所截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)有一組圓.下列四個命題正確的是( )
A. 存在,使圓與軸相切
B. 存在一條直線與所有的圓均相交
C. 存在一條直線與所有的圓均不相交
D. 所有的圓均不經(jīng)過原點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)分別求曲線的極坐標方程和曲線的直角坐標方程;
(Ⅱ)設(shè)直線交曲線于,兩點,交曲線于,兩點,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個,已知從袋子中隨機抽取1個小球,取到標號為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機抽取2個球,記第一次取出小球標號為a,第二次取出的小球標號為b.①記“a+b=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com