【題目】從某單位45名職工中隨機(jī)抽取5名職工參加一項(xiàng)社區(qū)服務(wù)活動(dòng),用隨機(jī)數(shù)法確定這5名職工現(xiàn)將隨機(jī)數(shù)表摘錄部分如下:

從隨機(jī)數(shù)表第一行的第5列和第6列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出的第5個(gè)職工的編號(hào)為

A.23B.37C.35D.17

【答案】C

【解析】

根據(jù)采用隨機(jī)數(shù)表的原則,在讀數(shù)中出現(xiàn)的相同數(shù)據(jù)只取一次,超過(guò)編號(hào)的數(shù)據(jù)要剔除.45名職工,編號(hào)為01-45求解.

采用隨機(jī)數(shù)表在讀數(shù)中出現(xiàn)的相同數(shù)據(jù)只取一次,超過(guò)編號(hào)的數(shù)據(jù)要剔除.45名職工,編號(hào)為01-45,

所以抽取過(guò)程中,依次出現(xiàn)77,94均超過(guò)編號(hào),需要剔除,

第一個(gè)數(shù)為39,然后根據(jù)此法,抽取43,17,37,35,

故選出的第5個(gè)職工的編號(hào)是35.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,,求的單調(diào)遞減的概率;

2)當(dāng),且為整數(shù)時(shí),求二次函數(shù)有兩個(gè)零點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《朗讀者》以精美的文字,最平實(shí)的情感讀出文字背后的價(jià)值,感染了眾多聽(tīng)眾,中央電視臺(tái)在2018年推出了《朗讀者第二季》,電視臺(tái)節(jié)目組要從2018名觀眾中抽取50名幸運(yùn)觀眾.先用簡(jiǎn)單隨機(jī)抽樣從2018人中剔除18人,剩下的2000人再按系統(tǒng)抽樣方法抽取50人,則在2018人中,每個(gè)人被抽取的可能性 ( )

A. 都相等,且為B. 都相等,且為C. 均不相等D. 不全相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面中兩條直線ln相交于O,對(duì)于平面上任意一點(diǎn)M,若p,q分別是M到直線ln的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.則下列說(shuō)法正確的(

A.p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有一個(gè)

B.pq=0,且p+q0,則“距離坐標(biāo)”為(pq)的點(diǎn)有且僅有2個(gè)

C.pq0,則“距離坐標(biāo)”為(pq)的點(diǎn)有且僅有4個(gè)

D.p=q,則點(diǎn)M的軌跡是一條過(guò)O點(diǎn)的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)下列命題:( )

函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱; 函數(shù)是周期函數(shù);

當(dāng)時(shí),函數(shù)取最大值;函數(shù)的圖象與函數(shù)的圖象沒(méi)有公共點(diǎn),其中正確命題的序號(hào)是

(A)①③ (B)②③ (C)①④ (D)②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們稱一個(gè)非負(fù)整數(shù)集合(非空)為好集合,若對(duì)任意,或者,或者.以下記的元素個(gè)數(shù).

給出所有的元素均小于的好集合;(給出結(jié)論即可)

求出所有滿足的好集合;(同時(shí)說(shuō)明理由)

若好集合滿足,求證: 中存在元素,使得中所有元素均為的整數(shù)倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓和雙曲線有共同焦點(diǎn)是它們的一個(gè)交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為( )

A. 3B. 2C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面為菱形,平面,分別是的中點(diǎn).

1證明:

2上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若長(zhǎng)方體的底面是邊長(zhǎng)為2的正方形,高為4,的中點(diǎn),則(

A.B.平面平面

C.三棱錐的體積為D.三棱錐的外接球的表面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案