18.若a=2log32,b=log${\;}_{\frac{1}{4}}$2,$c={2^{-\frac{1}{3}}}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

分析 利用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=2log32=log34>log33=1,
b=log${\;}_{\frac{1}{4}}$2<$lo{g}_{\frac{1}{4}}1$=0,
0<$c={2^{-\frac{1}{3}}}$<20=1,
∴a>c>b.
故選:B.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)在定義域內(nèi)滿足:
(1)對于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正數(shù)M,使得|f(x)|≤M,則稱函數(shù)f(x)為“單通道函數(shù)”,給出以下4個函數(shù):
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“單通道函數(shù)”有①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$y=sin2x-\sqrt{3}cos2x$的圖象的一條對稱軸方程為( 。
A.$x=\frac{π}{12}$B.$x=-\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三個函數(shù)f(x)=2x+x,g(x)=x-3,h(x)=log2x+x 的零點依次為a,b,c,則下列結(jié)論正確的是( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)滿足f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,則f(x+1)的表達(dá)式為(  )
A.f(x+1)=(x+1)2+$\frac{1}{(x+1)^{2}}$B.f(x+1)=(x-$\frac{1}{x}$)2+$\frac{1}{(x-\frac{1}{x})^{2}}$
C.f(x+1)=(x+1)2+2D.f(x+1)=(x+1)2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若三點A(3,3),B(a,0),C(0,b)(其中a•b≠0)共線,則$\frac{1}{a}$+$\frac{1}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知:如圖所示,AB∥CD,OD2=BO•OE.求證:AD∥CE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=3x,g(x)=|x+a|-3,其中a∈R.
(Ⅰ)若函數(shù)h(x)=f[g(x)]的圖象關(guān)于直線x=2對稱,求a的值;
(Ⅱ)給出函數(shù)y=g[f(x)]的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$c:\frac{y^2}{a^2}-\frac{x^2}{b^2}(a>0,b>0)$的漸近線方程為$y=±\frac{3}{4}x$,且其焦點為(0,5),則雙曲線C的方程( 。
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

同步練習(xí)冊答案