考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:本題可以先根據(jù)對(duì)數(shù)運(yùn)算的性質(zhì),將原式中乘積轉(zhuǎn)化和的形式,再構(gòu)造新數(shù)列,求出新數(shù)列的通項(xiàng),得到原數(shù)列通項(xiàng),
解答:
解:∵a
n+1•a
n=2
n,
∴
lg(an+1•an)=lg2n,
∴l(xiāng)ga
n+1+lga
n=nlg2.
∴
lgan+1-(n+1)lg2+lg2=-[
lgan-nlg2+lg2]
∵a
1=1,
∴
lga1-lg2+lg2=-lg2.
∴數(shù)列{
lgan-nlg2+lg2}是以
-lg2為首項(xiàng),-1為公比的等比數(shù)列.
∴
lgan-nlg2+lg2=
-lg2×(-1)
n-1,
∴
lgan=nlg2-lg2+×(-1)nlg2,
∴
an=2,n∈N
*.
點(diǎn)評(píng):本題考查的是用構(gòu)造法求數(shù)列通項(xiàng),考查了化歸轉(zhuǎn)化的數(shù)學(xué)思想,也可以分n為奇數(shù)與偶數(shù),奇數(shù)項(xiàng)是首項(xiàng)為1,公比為2的等比數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2,公比為2的等比數(shù)列,解決更簡(jiǎn)單些.本題難度適中,屬于中檔題.