【題目】已知橢圓C:x2+2y2=4,
(1)求橢圓C的離心率
(2)設(shè)O為原點,若點A在橢圓C上,點B在直線y=2上,且OA⊥OB,求直線AB與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.
【答案】
(1)解:由x2+2y2=4,得橢圓C的標準方程為 .
∴a2=4,b2=2,從而c2=a2﹣b2=2.
因此a=2,c= .
故橢圓C的離心率e=
(2)解:直線AB與圓x2+y2=2相切.
證明如下:
設(shè)點A,B的坐標分別為(x0,y0),(t,2),其中x0≠0.
∵OA⊥OB,
∴ =0,即tx0+2y0=0,解得 .
當x0=t時, ,代入橢圓C的方程,得t= .
故直線AB的方程為x= ,圓心O到直線AB的距離d= .
此時直線AB與圓x2+y2=2相切.
當x0≠t時,直線AB的方程為 ,
即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.
圓心O到直線AB的距離d= .
又 ,t= .
故 = .
此時直線AB與圓x2+y2=2相切
【解析】(1)化橢圓方程為標準式,求出半長軸和短半軸,結(jié)合隱含條件求出半焦距,則橢圓的離心率可求;(2)設(shè)出點A,B的坐標分別為(x0 , y0),(t,2),其中x0≠0,由OA⊥OB得到 =0,用坐標表示后把t用含有A點的坐標表示,然后分A,B的橫坐標相等和不相等寫出直線AB的方程,然后由圓x2+y2=2的圓心到AB的距離和圓的半徑相等說明直線AB與圓x2+y2=2相切.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環(huán)數(shù)如下:
甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8
則下列判斷正確的是( 。
A. 甲射擊的平均成績比乙好 B. 甲射擊的成績的眾數(shù)小于乙射擊的成績的眾數(shù)
C. 乙射擊的平均成績比甲好 D. 甲射擊的成績的極差大于乙射擊的成績的極差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在,使成立,則稱為的不動點.已知函數(shù) .
(1)當,時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若的兩個不動點為,,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一位數(shù)學(xué)老師在黑板上寫了三個向量,,,其中,都是給定的整數(shù).老師問三位學(xué)生這三個向量的關(guān)系,甲回答:“與平行,且與垂直”,乙回答:“與平行”,丙回答:“與不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學(xué)生判斷正確,由此猜測,的值不可能為( )
A. , B. , C. , D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家邊防安全條例規(guī)定:當外輪與我國海岸線的距離小于或等于海里時,就會被警告.如圖,設(shè),是海岸線上距離海里的兩個觀察站,滿足,一艘外輪在點滿足,.
(1),滿足什么關(guān)系時,就該向外輪發(fā)出警告令其退出我國海域?
(2)當時,間處于什么范圍內(nèi)可以避免使外輪進入被警告區(qū)域?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD= ,F(xiàn)為PC的中點,AF⊥PB.
(1)求PA的長;
(2)求二面角B﹣AF﹣D的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com