【題目】已知: , : ().
(1)若, 為假, 為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分條件,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)先解二次不等式得出命題p中x的取值范圍,將m=5代入,得到命題q中x的范圍, 為假, 為真,即命題、中一真一假,分類討論真假和假真兩種情況,求出x的取值范圍;(2) 是的充分條件即命題中x的取值范圍構(gòu)成的集合P是命題中x的取值范圍構(gòu)成的集合Q的子集,根據(jù)集合間的關(guān)系列出不等式,求出m的取值范圍.
試題解析:
解不等式,得.
(1)∵,∴命題: ,
又命題、中一真一假,
①若真假,則解得;
②若假真,則解得.
綜上,實(shí)數(shù)的取值范圍是.
(2)令, ,
∵是的充分條件,
∴,
∴解得
∴,即實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次運(yùn)動會中甲、乙兩名射擊運(yùn)動員決賽中各射擊十次的成績(環(huán))如下:
(1)用莖葉圖表示甲、乙兩個(gè)人的成績;
(2)根據(jù)莖葉圖分析甲、乙兩人的成績;
(3)計(jì)算兩個(gè)樣本的平均數(shù)和標(biāo)準(zhǔn)差,并根據(jù)計(jì)算結(jié)果估計(jì)哪位運(yùn)動員的成績比較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓E的左右頂點(diǎn)分別為A、B,左右焦點(diǎn)分別為、,,直線交橢圓于C、D兩點(diǎn),與線段及橢圓短軸分別交于兩點(diǎn)(不重合),且.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)若,設(shè)直線的斜率分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知直線l1: (, ),拋物線C: (t為參數(shù)).以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線l1 和拋物線C的極坐標(biāo)方程;
(Ⅱ)若直線l1 和拋物線C相交于點(diǎn)A(異于原點(diǎn)O),過原點(diǎn)作與l1垂直的直線l2,l2和拋物線C相交于點(diǎn)B(異于原點(diǎn)O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若從, , , 四個(gè)數(shù)中任取的一個(gè)數(shù), 是從, , 三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若是從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x﹣ ,且f( )=3.
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生每次投籃的命中概率都為.現(xiàn)采用隨機(jī)模擬的方法求事件的概率:先由計(jì)算器產(chǎn)生0到9之間的整數(shù)值隨機(jī)數(shù),制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生如下20組隨機(jī)數(shù):989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,據(jù)此統(tǒng)計(jì),該學(xué)生三次投籃中恰有一次命中的概率約為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分15分)如圖,在四棱錐中,平面PAD⊥平面ABCD, ,,E是BD的中點(diǎn).
(Ⅰ)求證:EC//平面APD;
(Ⅱ)求BP與平面ABCD所成角的正切值;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于函數(shù)(),
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),試求的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com