精英家教網 > 高中數學 > 題目詳情

【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據歷年的種植經驗,一株該種作物的年收貨量(單位:kg)與它的相近作物株數之間的關系如下表所示:

X

1

2

3

4

Y

51

48

45

42

這里,兩株作物相近是指它們之間的直線距離不超過1米.

)完成下表,并求所種作物的平均年收獲量;

Y

51

48

45

42

頻數


4



(Ⅱ)在所種作物中隨機選取一株,求它的年收獲量至少為48kg的概率.

【答案】(1)表格見詳解,平均年收獲量;(2

【解析】

1)所種作物的總株數為15,其中相近作物株數為1的作物有2株,相近作物株數2的作物有4株,相近作物株數為3的作物有6株,相近作物株數為4的作物有3株,列表如下:

Y

51

48

45

42

頻數

2

4

6

3

故平均數為;

2,故在所選作物中選取一株,它的年收獲量至少為48Kg的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】《五曹算經》是我國南北朝時期數學家甄鸞為各級政府的行政人員編撰的一部實用算術書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場院內有圓錐形稻谷堆,底面周長3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有(

A.57.08B.171.24C.61.73D.185.19

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為,,假設各盤比賽結果相互獨立.

I)求紅隊至少兩名隊員獲勝的概率;

II)用表示紅隊隊員獲勝的總盤數,求的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場銷售某件商品的經驗表明,該商品每日的銷量 (單位:千克)與銷售價格 (單位:元/千克)滿足關系式,其中為常數.已知銷售價格為/千克時,每日可售出該商品千克.

1)求實數的值;

2)若該商品的成本為/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】p:關于x的方程無解,q

1)若時,“”為真命題,“”為假命題,求實數a的取值范圍.

2)當命題“若p,則q”為真命題,“若q,則p”為假命題時,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列關于回歸分析的說法中錯誤的有( )

(1). 殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預報精確度越高.

(2). 回歸直線一定過樣本中心。

(3). 兩個模型中殘差平方和越小的模型擬合的效果越好。

(4) .甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若存在兩個極值點,,,證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點.

(1)證明:平面;

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

同步練習冊答案