【題目】甲乙兩名射擊運(yùn)動員分別對一目標(biāo)射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:

(1)2人都射中目標(biāo)的概率;

(2)2人中恰有1人射中目標(biāo)的概率;

(3)2人至少有1人射中目標(biāo)的概率。

【答案】(1),(2).(3)

【解析】

(1)只需將兩人射中的概率相乘即可,(2)恰有一人射中則包括甲擊中、乙未擊中和甲未擊中、乙擊中,分別求出對應(yīng)的概率再相加即可,(3)可根據(jù)對立事件先將兩人都不射中的概率求出,在用1減去兩人都不中的情況即得結(jié)論.

甲射擊次,擊中目標(biāo)為事件,“乙射擊次,擊中目標(biāo)為事件,則,,為相互獨(dú)立事件,

(1)人都射中的概率為:

,

人都射中目標(biāo)的概率是

(2)“人各射擊次,恰有人射中目標(biāo)包括兩種情況:一種是甲擊中、乙未擊中(事件發(fā)生),另一種是甲未擊中、乙擊中(事件發(fā)生)根據(jù)題意,事件互斥,根據(jù)互斥事件的概率加法公式和相互獨(dú)立事件的概率乘法公式,所求的概率為:

人中恰有人射中目標(biāo)的概率是

(3)(法1):2人至少有1人射中包括“2人都中“2人有1人不中”2種情況,其概率為

(法2):“2人至少有一個(gè)擊中“2人都未擊中為對立事件,

2個(gè)都未擊中目標(biāo)的概率是,

∴“兩人至少有1人擊中目標(biāo)的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)基地有五臺機(jī)器,現(xiàn)有五項(xiàng)工作待完成,每臺機(jī)器完成每項(xiàng)工作后獲得的效益值如表所示.若每臺機(jī)器只完成一項(xiàng)工作,且完成五項(xiàng)工作后獲得的效益值總和最大,則下列敘述錯(cuò)誤的的是_____________.

甲只能承擔(dān)第四項(xiàng)工作

乙不能承擔(dān)第二項(xiàng)工作

丙可以不承擔(dān)第三項(xiàng)工作

丁可以承擔(dān)第三項(xiàng)工作

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的方格表中的某些小方格染黑,使得不存在由三個(gè)黑色小方格構(gòu)成的共四種情形.求最多有多少個(gè)小方格被染色?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)對任意,都有恒成立,求實(shí)數(shù)a的取值范圍;

(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與直線交于P點(diǎn).

)當(dāng)直線P點(diǎn),且與直線平行時(shí),求直線的方程.

)當(dāng)直線P點(diǎn),且原點(diǎn)O到直線的距離為1時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點(diǎn)為線段的中點(diǎn),點(diǎn)是線段上的一個(gè)動點(diǎn).

(Ⅰ)求證:平面 平面;

(Ⅱ)設(shè)二面角的平面角為,試判斷在線段上是否存在這樣的點(diǎn),使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若上存在極大值點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)求證:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn),與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過橢圓的左頂點(diǎn)的兩條直線,分別交橢圓兩點(diǎn),且,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);

3)在(2)的條件下求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C以點(diǎn)為圓心,且被直線截得的弦長為.

1)求圓C的標(biāo)準(zhǔn)方程;

2)若直線l經(jīng)過點(diǎn),且與圓C相切,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案