【題目】已知直線l過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截的線段中點M在直線x+y-3=0上,求直線l的方程.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四棱錐中底面邊長為,側(cè)棱與底面所成角的正切值為.
(1)求正四棱錐的外接球半徑;
(2)若E是PB中點,求異面直線PD與AE所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某籃球比賽中,根據(jù)甲和乙兩人的得分情況得到如圖所示的莖葉圖.
(1)從莖葉圖的特征來說明他們誰發(fā)揮得更穩(wěn)定;
(2)用樣本的數(shù)字特征驗證他們誰發(fā)揮得更好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓錐頂點為,底面圓心為,其母線與底面所成的角為45°,和是底面圓上的兩條平行的弦,.
(1)證明:平面與平面的交線平行于底面;
(2)求軸與平面所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示, 平面,四邊形是矩形,,分別是的中點.
(1)求平面和平面所成二面角的大;
(2)求證: 平面;
(3)當的長度變化時, 求異面直線與所成角的可能范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間生產(chǎn)一種儀器的固定成本是元,每生產(chǎn)一臺該儀器需要增加投入元,已知總收入滿足函數(shù):,其中是儀器的月產(chǎn)量.
(利潤=總收入-總成本).
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為何值時,車間所獲利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線:與橢圓有且只有一個公共點.
(1)求橢圓的方程及點的坐標;
(2)設為坐標原點,直線平行于,與橢圓交于不同的兩點,且與直線交于點.證明:存在實數(shù),使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線l經(jīng)過第二、三、四象限,則直線l的傾斜角的范圍是 ( )
A. 0°≤α<90° B. 90°≤α<180°
C. 90°<α<180° D. 0°≤α<180°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】育才高中為了推進新課程改革,滿足不同層次學生的需求,決定在每周的周一、周三、周五的課外活動期間同時開設“茶藝”、“模擬駕駛”、“機器人制作”、“數(shù)學與生活”和“生物與環(huán)境”選修課,每位有興趣的同學可以在任何一天參加任何一門科目.(規(guī)定:各科達到預先設定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各選修課各天的滿座的概率如下表:
生物與環(huán)境 | 數(shù)學與生活 | 機器人制作 | 模擬駕駛 | 茶藝 | |
周一 | |||||
周三 | |||||
周五 |
(1)求茶藝選修課在周一、周三、周五都不滿座的概率;
(2)設周三各選修課中滿座的科目數(shù)為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com