已知函數(shù)f(x)=2sin(ωx+),x∈R,其中ω>0,-π<≤π.若f(x)的最小正周期為6π,且當(dāng)x=時(shí),f(x)取得最大值,則(  )

(A)f(x)在區(qū)間[-2π,0]上是增函數(shù)

(B)f(x)在區(qū)間[-3π,-π]上是增函數(shù)

(C)f(x)在區(qū)間[3π,5π]上是減函數(shù)

(D)f(x)在區(qū)間[4π,6π]上是減函數(shù)


A

解析:∵T=6π,

∴ω===,

×+=2kπ+(k∈Z),

∴=2kπ+ (k∈Z).

∵-π<≤π,

∴令k=0得=.

∴f(x)=2sin(+).

∴增區(qū)間為2kπ-<+<2kπ+,k∈Z,

∴2kπ-<<2kπ+,k∈Z,

∴6kπ-<x<6kπ+,k∈Z,

當(dāng)k=0時(shí),-<x<.

∴f(x)在[-2π,0]上是增函數(shù).故選A.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


在直角坐標(biāo)系xOy中,有一定點(diǎn)A(2,1),若線段OA的垂直平分線過拋物線y2=2px(p>0)的焦點(diǎn),則該拋物線的準(zhǔn)線方程是          . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.

(1)證明:DB=DC;

(2)設(shè)圓的半徑為1,BC=,延長CE交AB于點(diǎn)F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖所示,已知兩個正方形ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的

中點(diǎn).

(1)若CD=2,平面ABCD⊥平面DCEF,求MN的長;

(2)用反證法證明:直線ME與BN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)x>0,y>0,a=x+y,b=·,則a與b的大小關(guān)系是    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)函數(shù)f(x)=sin2ωx+2sin ωx·cos ωx-cos2ωx+λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(,1).

(1)求函數(shù)f(x)的最小正周期;

(2)若y=f(x)的圖象經(jīng)過點(diǎn)(,0),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在△ABC中,角A,B,C的對邊分別為a,b,c,且cos(A-B)cos B-sin(A-B)sin(A+C)

=-.

(1)求sin A的值;

(2)若a=4,b=5,求向量方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線x2-y2=1,點(diǎn)F1、F2為其兩個焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若PF1⊥PF2,則|PF1|+|PF2|的值為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線的中心在原點(diǎn),一個焦點(diǎn)為F1(-,0),點(diǎn)P在雙曲線上,且線段PF1的中點(diǎn)坐標(biāo)為(0,2),則此雙曲線的方程是(  )

(A) -y2=1      (B)x2-=1

(C) -=1  (D) -=1

查看答案和解析>>

同步練習(xí)冊答案