已知F1,F(xiàn)2為橢圓
x2
25
+
y2
9
=1
的兩個焦點,過F1的直線交橢圓于A,B兩點,|AB|=8,則|AF2|+|BF2|=( 。
A、2B、10C、12D、14
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)已知條件,由橢圓定義知:|AB|+|AF2|+|BF2|=4a,由此能求出結(jié)果.
解答: 解:橢圓
x2
25
+
y2
9
=1
中,a=5,
∵F1,F(xiàn)2為橢圓
x2
25
+
y2
9
=1
的兩個焦點,過F1的直線交橢圓于A,B兩點,
∴由橢圓定義知:|AB|+|AF2|+|BF2|=4a=20,
∵|AB|=8,
∴|AF2|+|BF2|=20-8=12.
故選:C.
點評:本題考查兩條線段和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,要熟練掌握橢圓的簡單性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,AD=1,∠BAD=60°,E為CD的中點,若
AC
BE
=1,則AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點G是△ABC的重心,若∠A=120°,
AB
AC
=-2,則|
AG
|的最小值是( 。
A、
3
3
B、
2
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x<-2”是“x≤0”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果兩個球的體積之比為1:8,那么兩個球的表面積之比為(  )
A、8:27B、1:2
C、1:4D、1:8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)上任意一點到兩焦點的距離分別為d1,d2,焦距為2c,若d1,2c,d2成等差數(shù)列,則橢圓的離心率為( 。
A、
1
2
B、
2
2
C、
3
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“0<x<2”是“x2-x<0”的( 。
A、充分非必要條件
B、必要非充分條件
C、充分必要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(-π,2π)內(nèi)與
4
終邊相同的角有( 。﹤.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,E,F(xiàn),G,H分別為正方體AC1的棱A1B1,A1D1,B1C1,D1C1的中點,
1)求證:面AEF∥面BDHG;
2)求對角線AC1與底面ABCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案