【題目】已知冪函數(shù)滿足.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;
(3)若函數(shù),是否存在實數(shù),使函數(shù)在上的值域為?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
【答案】(1);(2)存在使得的最小值為0;(3).
【解析】試題分析:(1)由為冪函數(shù)可得,解得或,經驗證。(2)令,則,設,則將問題轉化為函數(shù)在上的最小值是否為0的問題。根據(jù)對稱軸與區(qū)間的關系求解,可得滿足題意。(3)由題意得,且在定義域內為單調遞減函數(shù),若存在實數(shù)a,b滿足題意,則可得,由②-①消去n得,從而,將③代入②得,再令,由得,所以將問題轉化為求在
上的取值范圍,根據(jù)二次函數(shù)的知識可得。
試題解析:
(1)∵是冪函數(shù),
∴,
解得或,
當時, ,不滿足,
當時, ,滿足,
∴
∴。
(2)令,則,
設,
①當,即時,由題意得
,
解得;
②當,即時,由題意得
,
解得(舍去);
③當,即時,由題意得
,
解得(舍去)
綜上存在使得的最小值為0。
(3)由題意得,
∴在定義域內為單調遞減函數(shù);
若存在實數(shù),使函數(shù)在上的值域為,
則,
由②-①,得
,
∴,
將③代入②得,
,
令,
∵,
∴,
又,故在區(qū)間上單調遞減,
∴。
∴存在實數(shù),使函數(shù)在上的值域為且實數(shù)的取值范圍為
.
科目:高中數(shù)學 來源: 題型:
【題目】近年來空氣質量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關,在市第一人民醫(yī)院隨機對入院50人進行了問卷調查,得到了如表的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99%的把握認為患心肺疾病與性別有關?說明你的理由.
參考格式: ,其中.
下面的臨界值僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知2件次品和3件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結果.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產品需要費用100元,設X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸,與直角坐標系取相同的單位長度建立極坐標系,曲線的極坐標方程為.
(1)化曲線的方程為普通方程,并說明它們分別表示什么曲線;
(2)設曲線與軸的一個交點的坐標為,經過點作斜率為1的直線, 交曲線于兩點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知指數(shù)函數(shù)
(1)函數(shù)過定點,求的值;
(2)當時,求函數(shù)的最小值;
(3)是否存在實數(shù),使得(2)中關于的函數(shù)的定義域為時,值域為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的頂點在坐標原點,焦點在軸上,過點的直線交拋物線于兩點,線段的長度為8, 的中點到軸的距離為3.
(1)求拋物線的標準方程;
(2)設直線在軸上的截距為6,且拋物線交于兩點,連結并延長交拋物線的準線于點,當直線恰與拋物線相切時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 的定義域為 ,若對于任意的 , ,都有 ,且當 時,有 .
(1)證明: 為奇函數(shù);
(2)判斷 在 上的單調性,并證明;
(3)設 ,若 ( 且 )對 恒成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,圓的直角坐標方程為,直線的參數(shù)方程為(為參數(shù)),射線的極坐標方程為.
(1)求圓和直線的極坐標方程;
(2)已知射線與圓的交點為,與直線的交點為,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com