【題目】為響應生產(chǎn)發(fā)展、生活富裕、鄉(xiāng)風文明、村容整潔、管理民主的社會主義新農(nóng)村建設,某自然村將村邊一塊廢棄的扇形荒地(如圖)租給蜂農(nóng)養(yǎng)蜂、產(chǎn)蜜與售蜜.已知扇形AOB中,,(百米),荒地內(nèi)規(guī)劃修建兩條直路ABOC,其中點C上(CA,B不重合),在小路ABOC的交點D處設立售蜜點,圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長區(qū).,蜂巢區(qū)的面積為S(平方百米).

1)求S關(guān)于的函數(shù)關(guān)系式;

2)當為何值時,蜂巢區(qū)的面積S最小,并求此時S的最小值.

【答案】1,;(2)當等于時,S取到最小值平方百米

【解析】

1)由余弦定理得,由正弦定理得,蜂巢區(qū)的面積,由此能求出關(guān)于的函數(shù)關(guān)系式.

2)對求導得,當時,遞減,當時,,遞增,當,時,,遞減,由此能求出當時,蜂巢區(qū)的面積最小,的最小值為

1,由余弦定理得

中,由正弦定理得,

,

蜂巢區(qū)的面積:

,

整理,得關(guān)于的函數(shù)關(guān)系式為:

,

2)對求導,得

,解得

時,遞減,

時,遞增,

,時,,遞減,

綜上所述,的最小值只可有在趨近時取得,

時,,當時,,

時,蜂巢區(qū)的面積最小,的最小值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在R的奇函數(shù),其中a是常數(shù).

1)求常數(shù)a的值;

2)設關(guān)于x的函數(shù)有兩個不等的零點,求實數(shù)b的取值范圍;

3)求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的極值;

2)當函數(shù)有兩個極值點,總有成立,求整數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,且在y軸上截得的弦MN的長為8

1)求動圓圓心的軌跡C的方程;

2)已知點,長為的線段PQ的兩端點在軌跡C上滑動.當軸是的角平分線時,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓相交于兩點,其中在第一象限,是橢圓上一點.

1)記、是橢圓的左右焦點,若直線,當的距離與到直線的距離相等時,求點的橫坐標;

2)若點關(guān)于軸對稱,當的面積最大時,求直線的方程;

3)設直線軸分別交于,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線和曲線,以極點為坐標原點,極軸為軸非負半軸建立平面直角坐標系.

(1)求曲線和曲線的直角坐標方程;

(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓經(jīng)過點,且離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點任作一條直線與橢圓交于不同的兩點.在軸上是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)

如圖,已知拋物線,過點任作一直線與相交于兩點,過點軸的平行線與直線相交于點為坐標原點).

(1)證明:動點在定直線上;

(2)的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.

查看答案和解析>>

同步練習冊答案