【題目】已知、分別是橢圓的左頂點(diǎn)、右焦點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),當(dāng)軸時(shí), .

(1)求橢圓的離心率;

(2)若橢圓存在點(diǎn),使得四邊形是平行四邊形(點(diǎn)在第一象限),求直線的斜率之積;

(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過(guò)點(diǎn)作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點(diǎn)為,直線的橫、縱截距分別為、,求證: 為定值.

【答案】(1);(2);(3)見(jiàn)解析.

【解析】試題分析:

(1)利用題意得到關(guān)于的齊次方程,求解方程組可得橢圓的離心率;

(2) 由題意, , ,,結(jié)合(1)的結(jié)論可得.

(3) 由(1)知橢圓方程為,圓的方程為.

四邊形的外接圓方程為,

所以,因?yàn)辄c(diǎn)在橢圓上,則.

試題解析:

解:(1)由軸,知,代入橢圓的方程,

,解得.

,所以,解得.

(2)因?yàn)樗倪呅?/span>是平行四邊,所以軸,

所以,代入橢圓的方程,解得, 因?yàn)辄c(diǎn)在第一象限,所以,同理可得, , 所以,

由(1)知,得,所以.

(3)由(1)知,又,解得,所以橢圓方程為

的方程為 ①. 連接,由題意可知, , ,

所以四邊形的外接圓是以 為直徑的圓,

設(shè),則四邊形的外接圓方程為,

 、. ①-②,得直線的方程為

,則;令,則. 所以,

因?yàn)辄c(diǎn)在橢圓上,所以,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò)兩點(diǎn), 且圓心在直線

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)直線過(guò)點(diǎn)且與圓有兩個(gè)不同的交點(diǎn) ,若直線的斜率大于0,求的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦的垂直平分線過(guò)點(diǎn),若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , , ,點(diǎn)上,且

(Ⅰ)已知點(diǎn)上,且,求證:平面平面

(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線與平面所成的角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分12分一塊長(zhǎng)為、寬為的長(zhǎng)方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為的小正方形,然后做成一個(gè)無(wú)蓋方盒

試把方盒的容積V表示為的函數(shù)

試求方盒容積V的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分12分在平面直角坐標(biāo)系xOy,已知兩點(diǎn),動(dòng)點(diǎn)M滿足設(shè)點(diǎn)M的軌跡為C,半拋物線),設(shè)點(diǎn)

C的軌跡方程;

設(shè)點(diǎn)T是曲線上一點(diǎn)曲線在點(diǎn)T處的切線與曲線C相交于點(diǎn)A和點(diǎn)B,ABD的面積的最大值及點(diǎn)T的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正四棱錐P﹣ABCD中,側(cè)棱PA與底面ABCD所成的角的正切值為
(1)求側(cè)面PAD與底面ABCD所成的二面角的大;
(2)若E是PB的中點(diǎn),求異面直線PD與AE所成角的正切值;
(3)問(wèn)在棱AD上是否存在一點(diǎn)F,使EF⊥側(cè)面PBC,若存在,試確定點(diǎn)F的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過(guò)原點(diǎn)的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓C截得的線段長(zhǎng)為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長(zhǎng)為8、高為4的等腰三角形,側(cè)視圖是一個(gè)底邊長(zhǎng)為6、高為4的等腰三角形.

(1)求該幾何體的體積;

(2)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過(guò)點(diǎn)E作球O的截面,則截面面積的最小值是( 。

A.
B.2π
C.
D.3π

查看答案和解析>>

同步練習(xí)冊(cè)答案