【題目】本題滿分12分在平面直角坐標系xOy,已知兩點,M滿足,設(shè)點M的軌跡為C半拋物線),設(shè)點

C的軌跡方程;

設(shè)點T是曲線上一點曲線在點T處的切線與曲線C相交于點A和點B,ABD的面積的最大值及點T的坐標

【答案】;(;

【解析】

試題分析:設(shè)點則可得向量的坐標,根據(jù)向量數(shù)量積公式可求得的軌跡的軌跡方程.(拋物線,設(shè)),求導根據(jù)導數(shù)的幾何意義可得在點處的切線的斜率,從而可得切線方程將切線方程和曲線方程聯(lián)立消去整理為關(guān)于的一元二次方程可知其判別式大于0,由韋達定理可得兩根之和兩根之積根據(jù)弦長公式可求得弦由點到線的距離公式可求得三角形的高,從而可得三角形面積配方法可求得其最值及取最值時的值

試題解析:解:設(shè)點,,

所以的軌跡方程是;(4

拋物線設(shè)),,所以切線為:

,,聯(lián)立,,

判別式,設(shè),,過點軸的垂線交直線于點,于是,,,

ABD的面積此時.(12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,滿足前n項和.

(I)證明: ;

(Ⅱ)證明:

(Ⅲ)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一鮮花店根據(jù)一個月(30天)某種鮮花的日銷售量與銷售天數(shù)統(tǒng)計如下,將日銷售量落入各組區(qū)間頻率視為概率.

日銷售量(枝)

銷售天數(shù)

3天

5天

13天

6天

3天

(1)試求這30天中日銷售量低于100枝的概率;

(2)若此花店在日銷售量低于100枝的時候選擇2天作促銷活動,求這2天恰好是在日銷售量低于50枝時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, , , 分別是的中點。

(Ⅰ)求證: ;

(Ⅱ)求直線和平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(I)求的解析式及單調(diào)遞減區(qū)間;

(II)是否存在常數(shù),使得對于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是橢圓的左頂點、右焦點,點為橢圓上一動點,當軸時, .

(1)求橢圓的離心率;

(2)若橢圓存在點,使得四邊形是平行四邊形(點在第一象限),求直線的斜率之積;

(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過點作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點為、,直線的橫、縱截距分別為、,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)若函數(shù)是奇函數(shù),求實數(shù)的值;

(2)若對任意的實數(shù),函數(shù)為實常數(shù))的圖象與函數(shù)的圖象總相切于一個定點.

① 求的值;

② 對上的任意實數(shù),都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為 1, 的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).

①當時, 為四邊形;②當時, 為等腰梯形;③當時, 為六邊形;④當時, 的面積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過變換后得曲線.

(1)求的方程;

(2)若為曲線上兩點, 為坐標原點,直線的斜率分別為,求直線被圓截得弦長的最大值及此時直線的方程.

查看答案和解析>>

同步練習冊答案