5.在研究函數(shù) f ( x )=$\sqrt{{x^2}+4}$-$\sqrt{{x^2}-12x+40}$的性質(zhì)時,某同學(xué)受兩點(diǎn)間距離公式啟發(fā),將f(x)變形為f(x)=$\sqrt{(x-0{)^2}+(0-2{)^2}}$-$\sqrt{(x-6{)^2}+(0-2{)^2}}$,并給出關(guān)于函數(shù)f(x)以下五個描述:
①函數(shù) f(x)的圖象是中心對稱圖形; 
②函數(shù) f(x)的圖象是軸對稱圖形;
③函數(shù) f(x)在[0,6]上是增函數(shù);
④函數(shù) f(x)沒有最大值也沒有最小值;
⑤無論m為何實(shí)數(shù),關(guān)于x的方程 f(x)-m=0都有實(shí)數(shù)根.
其中描述正確的是①③④.

分析 函數(shù) f ( x )=$\sqrt{{x^2}+4}$-$\sqrt{{x^2}-12x+40}$=$\sqrt{(x-0{)^2}+(0-2{)^2}}$-$\sqrt{(x-6{)^2}+(0-2{)^2}}$,如圖表示點(diǎn)P(x,0)到點(diǎn)A(0,2)的距離|PA|與到點(diǎn)B(6,2)的距離|PB|之差;結(jié)合圖形可知,在x=3處,f(x)=0,-6<PA-PB<6
∴函數(shù) f(x)的圖象是中心對稱圖形,對稱中心為(3,0),即可判斷.

解答 解:函數(shù) f ( x )=$\sqrt{{x^2}+4}$-$\sqrt{{x^2}-12x+40}$=$\sqrt{(x-0{)^2}+(0-2{)^2}}$-$\sqrt{(x-6{)^2}+(0-2{)^2}}$,如圖表示點(diǎn)P(x,0)到點(diǎn)A(0,2)的距離|PA|與到點(diǎn)B(6,2)的距離|PB|之差;結(jié)合圖形可知,在x=3處,f(x)=0,-6<PA-PB<6
∴函數(shù) f(x)的圖象是中心對稱圖形,對稱中心為(3,0),故①正確,②錯;
在(-∞,+∞)遞增,值域為(-6,6)
故③,函數(shù) f(x)在[0,6]上是增函數(shù),正確;
故④函數(shù) f(x)沒有最大值也沒有最小值,正確;
故⑤無論m為何實(shí)數(shù),關(guān)于x的方程 f(x)-m=0都有有實(shí)數(shù)根,錯.
故答案為:①③④

點(diǎn)評 本題考查了函數(shù)表達(dá)式的幾何意義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直角坐標(biāo)系內(nèi)A,B兩點(diǎn)滿足:(1)點(diǎn)A,B都在f(x)的圖象上;
(2)點(diǎn)A,B關(guān)于原點(diǎn)對稱,則稱點(diǎn)對(A,B)是函數(shù)f(x)的一個“姊妹點(diǎn)對”,點(diǎn)對(A,B)與(B,A)可看作一個“姊妹點(diǎn)對”,已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x<0)}\\{\frac{2}{{e}^{x}}(x≥0)}\end{array}\right.$,則f(x)的“姊妹點(diǎn)對”有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U=R,集合A={x|y=lgx},集合B=$\left\{{y|y=\sqrt{x}+1}\right\}$,那么A∩(∁UB)=( 。
A.B.(0,1]C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知正四棱錐的底面邊長為4cm,高與側(cè)棱夾角為45°,則其斜高長為$2\sqrt{3}$(cm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知 x,y 滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤m\\ y+2x≤4\end{array}\right.$,當(dāng) 3≤m≤5 時,目標(biāo)函數(shù) z=3x+2y的最大值的變化范圍是( 。
A.[7,8]B.[7,15]C.[6,8]D.[6,15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列結(jié)論中錯誤的是( 。
A.若0<α<$\frac{π}{2}$,則sinα<tanα
B.若α是第二象限角,則$\frac{α}{2}$為第一象限或第三象限角
C.若角α的終邊過點(diǎn)P(3k,4k)(k≠0),則sinα=$\frac{4}{5}$
D.若扇形的周長為6,半徑為2,則其中心角的大小為1弧度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙、丙三人組成一個小組參加電視臺主辦的聽曲猜哥歌名活動,在每一輪活動中,依次播放三首樂曲,然后甲猜第一首,乙猜第二首,丙猜第三首.若有一人猜錯,則活動立即結(jié)束;若三人均猜對,則該小組進(jìn)入下一輪.該小組最多參加三輪活動.已知每一輪甲猜對歌名的概率是$\frac{3}{4}$,乙猜對歌名的概率是$\frac{2}{3}$,丙猜對歌名的概率是$\frac{1}{2}$.甲、乙、丙猜對互不影響.
(1)求該小組未能進(jìn)入第二輪的概率;
(2)記乙猜歌曲的次數(shù)為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,則|3$\overrightarrow{a}$-2$\overrightarrow$|=( 。
A.52B.$2\sqrt{13}$C.100-48$\sqrt{3}$D.$\sqrt{100-48\sqrt{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年浙江普通高校招生學(xué)業(yè)水平考試數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)向量,,,若,則的最小值是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案