20.已知 x,y 滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤m\\ y+2x≤4\end{array}\right.$,當(dāng) 3≤m≤5 時(shí),目標(biāo)函數(shù) z=3x+2y的最大值的變化范圍是( 。
A.[7,8]B.[7,15]C.[6,8]D.[6,15]

分析 畫出約束條件的可行域,通過m的范圍,得到最小可行域以及最大可行域,利用目標(biāo)函數(shù)的幾何意義求解目標(biāo)函數(shù)的最大值的范圍即可.

解答 解:x,y 滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤m\\ y+2x≤4\end{array}\right.$,的可行域如圖,3≤m≤5 最小可行域?yàn)锽CDO以及最大可行域?yàn)镺AC,
如圖:目標(biāo)函數(shù) z=3x+2y的最大值:是目標(biāo)函數(shù)經(jīng)過BCDO的B時(shí)取得最大值中的最小值,經(jīng)過OAC中的A時(shí),取得最大值中的最大值,
由題意可得B(1,2),A(0,4).
目標(biāo)函數(shù) z=3x+2y的最大值的變化范圍是:[7,8].
故選:A.

點(diǎn)評(píng) 本題考查線性規(guī)劃的應(yīng)用,判斷目標(biāo)函數(shù)的最值以及可行域的畫法是解題的關(guān)鍵,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,則tan(α+$\frac{π}{4}$)=(  )
A.$-\frac{1}{7}$B.7C.$\frac{1}{7}$D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a,b,c均為實(shí)數(shù),則“b2=ac”是“a,b,c構(gòu)成等比數(shù)列”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若命題¬(p∨q)為真命題,則下列說法正確的是( 。
A.p為真命題,q為真命題B.p為真命題,q為假命題
C.p為假命題,q為真命題D.p為假命題,q為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}-\frac{2}{a_n}=0$,則稱{an}為“夢(mèng)想數(shù)列”,已知正項(xiàng)數(shù)列$\{\frac{1}{b_n}\}$為“夢(mèng)想數(shù)列”,且b1+b2+b3=2,則b6+b7+b8=( 。
A.4B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在研究函數(shù) f ( x )=$\sqrt{{x^2}+4}$-$\sqrt{{x^2}-12x+40}$的性質(zhì)時(shí),某同學(xué)受兩點(diǎn)間距離公式啟發(fā),將f(x)變形為f(x)=$\sqrt{(x-0{)^2}+(0-2{)^2}}$-$\sqrt{(x-6{)^2}+(0-2{)^2}}$,并給出關(guān)于函數(shù)f(x)以下五個(gè)描述:
①函數(shù) f(x)的圖象是中心對(duì)稱圖形; 
②函數(shù) f(x)的圖象是軸對(duì)稱圖形;
③函數(shù) f(x)在[0,6]上是增函數(shù);
④函數(shù) f(x)沒有最大值也沒有最小值;
⑤無(wú)論m為何實(shí)數(shù),關(guān)于x的方程 f(x)-m=0都有實(shí)數(shù)根.
其中描述正確的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x+y-3≤0}\\{x-2y+6≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=a|x|+2y的最小值為-6,則實(shí)數(shù)a等于( 。
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在極坐標(biāo)系中,點(diǎn)M的坐標(biāo)為$(3,\frac{π}{2})$,曲線C的方程為$ρ=2\sqrt{2}sin(θ+\frac{π}{4})$;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為-1的直線l經(jīng)過點(diǎn)M.
(1)求直線l和曲線C的直角坐標(biāo)方程;
(2)若P為曲線C上任意一點(diǎn),曲線l和曲線C相交于A、B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年浙江普通高校招生學(xué)業(yè)水平考試數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)實(shí)數(shù),滿足:,,則下列不等式中不成立的是( )

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案