17.若直角坐標(biāo)系內(nèi)A,B兩點滿足:(1)點A,B都在f(x)的圖象上;
(2)點A,B關(guān)于原點對稱,則稱點對(A,B)是函數(shù)f(x)的一個“姊妹點對”,點對(A,B)與(B,A)可看作一個“姊妹點對”,已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x<0)}\\{\frac{2}{{e}^{x}}(x≥0)}\end{array}\right.$,則f(x)的“姊妹點對”有2個.

分析 設(shè)P(x,y) (x<0),則點P關(guān)于原點的對稱點為P′(-x,-y),從而2ex+x2+2x=0,令φ(x)=2ex+x2+2x,利用導(dǎo)數(shù)性質(zhì)推導(dǎo)出函數(shù)φ(x)在區(qū)間(-2,-1),(-1,0)分別各有一個零點.由此能求出f(x)的“姊妹點對”的個數(shù).

解答 解:設(shè)P(x,y) (x<0),則點P關(guān)于原點的對稱點為P′(-x,-y),
于是$\frac{2}{{e}^{-x}}$=-(x2+2x),化為2ex+x2+2x=0,
令φ(x)=2ex+x2+2x,下面證明方程φ(x)=0有兩解.
由x2+2x≤0,解得-2≤x≤0,而$\frac{2}{{e}^{x}}$>0(x≥0),∴只要考慮x∈[-2,0]即可.
求導(dǎo)φ′(x)=2ex+2x+2,
令g(x)=2ex+2x+2,則g′(x)=2ex+2>0,
∴φ′(x)在區(qū)間[-2,0]上單調(diào)遞增,
而φ′(-2)=2e-2-4+2<0,φ′(-1)=2e-1>0,
∴φ(x)在區(qū)間(-2,0)上只存在一個極值點x0
而φ(-2)=2e-2>0,φ(-1)=2e-1-1<0,φ(0)=2>0,
∴函數(shù)φ(x)在區(qū)間(-2,-1),(-1,0)分別各有一個零點.
也就是說f(x)的“姊妹點對”有2個.
故答案為:2.

點評 本題考查函數(shù)的“姊妹點對”的個數(shù)的求法,是中檔題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,已知過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點A2作一個圓,該圓與其漸近線bx-ay=0交于點P,Q,若∠PA2Q=90°,|PQ|=2|OP|,則該雙曲線的離心率為(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某市家庭煤氣的使用量x(m3)和煤氣費f(x)(元) 滿足關(guān)系f(x)=$\left\{\begin{array}{l}{C,0<x≤A}\\{C+B(x-A),x>A}\end{array}\right.$,已知某家庭今年前三個月的煤氣費如表:
月份用氣量煤氣費
一月份4m34 元
二月份25m314 元
三月份35m319 元
若四月份該家庭使用了20m3的煤氣,則其煤氣費為(  )元.
A.10.5B.10C.11.5D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sinx•cosx-$\sqrt{3}{cos^2}$x.
(1)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象上每一點的橫坐標(biāo)伸長到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,若方程g(x)+$\frac{{\sqrt{3}+m}}{2}$=0在x∈[0,π]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,則tan(α+$\frac{π}{4}$)=( 。
A.$-\frac{1}{7}$B.7C.$\frac{1}{7}$D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}滿足an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,則a2017=(  )
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:?x0∈(-∞,0),2x0<3x0,命題$q:?x∈({0,\frac{π}{2}}),sinx<x$,則下列命題中真命題是( 。
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線y2=8x的焦點為F,設(shè)A(x1,y1),B(x2,y2)是拋物線上的兩個動點,若x1+x2+4=$\frac{{2\sqrt{3}}}{3}|{AB}$|,
則∠AFB的最大值為( 。
A.$\frac{π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在研究函數(shù) f ( x )=$\sqrt{{x^2}+4}$-$\sqrt{{x^2}-12x+40}$的性質(zhì)時,某同學(xué)受兩點間距離公式啟發(fā),將f(x)變形為f(x)=$\sqrt{(x-0{)^2}+(0-2{)^2}}$-$\sqrt{(x-6{)^2}+(0-2{)^2}}$,并給出關(guān)于函數(shù)f(x)以下五個描述:
①函數(shù) f(x)的圖象是中心對稱圖形; 
②函數(shù) f(x)的圖象是軸對稱圖形;
③函數(shù) f(x)在[0,6]上是增函數(shù);
④函數(shù) f(x)沒有最大值也沒有最小值;
⑤無論m為何實數(shù),關(guān)于x的方程 f(x)-m=0都有實數(shù)根.
其中描述正確的是①③④.

查看答案和解析>>

同步練習(xí)冊答案