5.拋物線y2=8x的焦點為F,設(shè)A(x1,y1),B(x2,y2)是拋物線上的兩個動點,若x1+x2+4=$\frac{{2\sqrt{3}}}{3}|{AB}$|,
則∠AFB的最大值為( 。
A.$\frac{π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

分析 利用余弦定理,結(jié)合基本不等式,即可求出∠AFB的最大值.

解答 解:因為${x_1}+{x_2}+4=\frac{{2\sqrt{3}}}{3}|{AB}|$,|AF|+|BF|=x1+x2+4,所以$|{AF}|+|{BF}|=\frac{{2\sqrt{3}}}{3}|{AB}|$.
在△AFB中,由余弦定理得:$cos∠AFB=\frac{{{{|{AF}|}^2}+{{|{BF}|}^2}-{{|{AB}|}^2}}}{{2|{AF}|•|{BF}|}}$=$\frac{{{{(|{AF}|+|{BF}|)}^2}-2|{AF}|•|{BF}|-{{|{AB}|}^2}}}{{2|{AF}|•|{BF}|}}=\frac{{\frac{4}{3}{{|{AB}|}^2}-{{|{AB}|}^2}}}{{2|{AF}|•|{BF}|}}-1=\frac{{\frac{1}{3}{{|{AB}|}^2}}}{{2|{AF}|•|{BF}|}}-1$.
又$|{AF}|+|{BF}|=\frac{{2\sqrt{3}}}{3}|{AB}|≥2\sqrt{|{AF}|•|{BF}|}⇒|{AF}|•|{BF}|≤\frac{1}{3}{|{AB}|^2}$.
所以$cos∠AFB≥\frac{{\frac{1}{3}{{|{AB}|}^2}}}{{2×\frac{1}{3}{{|{AB}|}^2}}}-1=-\frac{1}{2}$,∴∠AFB的最大值為$\frac{2π}{3}$,
故選D.

點評 本題考查拋物線的定義,考查余弦定理、基本不等式的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}ax+2-3a\;,x<0\\{2^x}-1\;\;,\;\;\;x≥0.\end{array}\right.$若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,則實數(shù)a的取值范圍是(-∞,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直角坐標系內(nèi)A,B兩點滿足:(1)點A,B都在f(x)的圖象上;
(2)點A,B關(guān)于原點對稱,則稱點對(A,B)是函數(shù)f(x)的一個“姊妹點對”,點對(A,B)與(B,A)可看作一個“姊妹點對”,已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x<0)}\\{\frac{2}{{e}^{x}}(x≥0)}\end{array}\right.$,則f(x)的“姊妹點對”有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若${({x-\frac{a}{x^2}})^9}$的二項展開式中含x6項的系數(shù)為36,則實數(shù)a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,cos2A=sinA,bc=2,則△ABC的面積為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某中學(xué)環(huán)保社團參照國家環(huán)境標準,制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):
空氣質(zhì)量指數(shù)(0,50](50,100](100,150](150,200](200,250](250,300]
空氣質(zhì)量等級1級優(yōu)2級良3級輕度污染4級中度污染5級重度污染6級嚴重污染
該社團將該校區(qū)在2016年連續(xù)100天的空氣質(zhì)量指數(shù)數(shù)據(jù)作為樣本,繪制了如圖的頻率分布表,將頻率視為概率.估算得全年空氣質(zhì)量等級為2級良的天數(shù)為73天(全年以365天計算).
空氣質(zhì)量指數(shù)頻數(shù)頻率
(0,50]xa
(50,100]yb
(100,150]250.25
(150,200]200.2
(200,250]150.15
(250,300]100.1
(Ⅰ)求x,y,a,b的值;
(Ⅱ)請在答題卡上將頻率分布直方圖補全(并用鉛筆涂黑矩形區(qū)域),并估算這100天空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U=R,集合A={x|y=lgx},集合B=$\left\{{y|y=\sqrt{x}+1}\right\}$,那么A∩(∁UB)=( 。
A.B.(0,1]C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知正四棱錐的底面邊長為4cm,高與側(cè)棱夾角為45°,則其斜高長為$2\sqrt{3}$(cm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,則|3$\overrightarrow{a}$-2$\overrightarrow$|=(  )
A.52B.$2\sqrt{13}$C.100-48$\sqrt{3}$D.$\sqrt{100-48\sqrt{3}}$

查看答案和解析>>

同步練習(xí)冊答案