13.若${({x-\frac{a}{x^2}})^9}$的二項(xiàng)展開式中含x6項(xiàng)的系數(shù)為36,則實(shí)數(shù)a=-4.

分析 通項(xiàng)公式Tr+1=${∁}_{9}^{r}$${x}^{9-r}(-\frac{a}{{x}^{2}})^{r}$=(-a)r${∁}_{9}^{r}$x9-3r,令9-3r=6,解得r,進(jìn)而得出.

解答 解:通項(xiàng)公式Tr+1=${∁}_{9}^{r}$${x}^{9-r}(-\frac{a}{{x}^{2}})^{r}$=(-a)r${∁}_{9}^{r}$x9-3r,令9-3r=6,解得r=1.
∴${({x-\frac{a}{x^2}})^9}$的二項(xiàng)展開式中含x6項(xiàng)的系數(shù)=-a×9=36,解得a=-4.
故答案為:-4.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=|x-a|+m|x+a|(0<m<1,m,a∈R),若對于任意的實(shí)數(shù)x不等式f(x)≥2恒成立時,實(shí)數(shù)a的取值范圍是{a|a≤-5或a≥5},則所有滿足條件的m的組成的集合是{$\frac{1}{5}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sinx•cosx-$\sqrt{3}{cos^2}$x.
(1)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,若方程g(x)+$\frac{{\sqrt{3}+m}}{2}$=0在x∈[0,π]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}滿足an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,則a2017=( 。
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:?x0∈(-∞,0),2x0<3x0,命題$q:?x∈({0,\frac{π}{2}}),sinx<x$,則下列命題中真命題是(  )
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一1000人、高二1200人、高三n人中,抽取81人進(jìn)行問卷調(diào)查.已知高二被抽取的人數(shù)為30,那么n=(  )
A.860B.720C.1020D.1040

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線y2=8x的焦點(diǎn)為F,設(shè)A(x1,y1),B(x2,y2)是拋物線上的兩個動點(diǎn),若x1+x2+4=$\frac{{2\sqrt{3}}}{3}|{AB}$|,
則∠AFB的最大值為( 。
A.$\frac{π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且當(dāng)x∈[1,2]時,f(x)=lnx-x+1,若函數(shù)g(x)=f(x)+mx有7個零點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.$(\frac{1-ln2}{8},\frac{1-ln2}{6})∪(\frac{ln2-1}{6},\frac{ln2-1}{8})$B.$(\frac{ln2-1}{6},\frac{ln2-1}{8})$
C.$(\frac{1-ln2}{8},\frac{1-ln2}{6})$D.$(\frac{1-ln2}{8},\frac{ln2-1}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知三個數(shù)a=0.60.3,b=log0.63,c=lnπ,則a,b,c的大小關(guān)系是( 。
A.c<b<aB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

同步練習(xí)冊答案