【題目】關(guān)于函數(shù),給出以下四個(gè)命題:(1)當(dāng)時(shí),單調(diào)遞減且沒有最值;(2)方程一定有實(shí)數(shù)解;(3)如果方程(為常數(shù))有解,則解得個(gè)數(shù)一定是偶數(shù);(4)是偶函數(shù)且有最小值.其中假命題的序號(hào)是____________.
【答案】(1)、(3)
【解析】
化簡(jiǎn)函數(shù)的解析式,畫出函數(shù)的圖象,對(duì)四個(gè)命題逐一判斷即可.
,它的圖象如下圖所示:
命題(1):當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減且沒有最值,故本命題是假命題;
命題(2):因?yàn)橹本存在斜率,所以一定有實(shí)數(shù)解,故本命題是真命題;
命題(3):,所以函數(shù)是偶函數(shù),當(dāng)有解時(shí),若,該方程的解的個(gè)數(shù)為偶數(shù);若時(shí),,只有一個(gè)解,故本命題是假命題;
命題(4):由(3)可知,函數(shù)是偶函數(shù),函數(shù)有最小值,最小值為零,故本命題是真命題.
故答案為:(1)、(3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:(),過原點(diǎn)的兩條直線和分別與交于點(diǎn)、和、,得到平行四邊形.
(1)當(dāng)為正方形時(shí),求該正方形的面積.
(2)若直線和關(guān)于軸對(duì)稱,上任意一點(diǎn)到和的距離分別為和,當(dāng)為定值時(shí),求此時(shí)直線和的斜率及該定值.
(3)當(dāng)為菱形,且圓內(nèi)切于菱形時(shí),求,滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(1)在曲線上任取一點(diǎn),連接,在射線上取一點(diǎn),使,求點(diǎn)軌跡的極坐標(biāo)方程;
(2)在曲線上任取一點(diǎn),在曲線上任取一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棋盤上標(biāo)有第、、、、站,棋子開始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時(shí),游戲結(jié)束.設(shè)棋子位于第站的概率為.
(1)當(dāng)游戲開始時(shí),若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)求、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,底面△是等腰直角三角形,,為側(cè)棱的中點(diǎn).
(1)求證:平面;
(2)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點(diǎn),過點(diǎn)的直線交橢圓于,兩點(diǎn),且的周長(zhǎng)為12.
(Ⅰ)求橢圓的方程
(Ⅱ)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得是以為底邊的等腰三角形若存在,求點(diǎn)橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若為單調(diào)函數(shù),求a的取值范圍;
(2)若函數(shù)僅一個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)為原點(diǎn)的拋物線C的焦點(diǎn)與橢圓的上焦點(diǎn)重合,且過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若拋物線上不同兩點(diǎn)A,B作拋物線的切線,兩切線的斜率,若記AB的中點(diǎn)的橫坐標(biāo)為m,AB的弦長(zhǎng),并求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com