【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的最小值;
(3)若,使成立,求實(shí)數(shù)的取值范圍.
【答案】(1)函數(shù)的單調(diào)減區(qū)間是,增區(qū)間是;(2);(3).
【解析】
(1)根據(jù)解析式求出g(x)的定義域和g′(x),再求出臨界點(diǎn),求出g′(x)<0和g′(x)>0對(duì)應(yīng)的解集,再表示成區(qū)間的形式,即所求的單調(diào)區(qū)間;
(2)先求出f(x)的定義域和f′(x),把條件轉(zhuǎn)化為f′(x)≤0在(1,+∞)上恒成立,再對(duì)f′(x)進(jìn)行配方,求出在x∈(1,+∞)的最大值,再令f′(x)max≤0求解;
(3)先把條件等價(jià)于“當(dāng)x∈[e,e2]時(shí),有f(x)min≤f′(x)max+a”,由(2)得f′(x)max,并把它代入進(jìn)行整理,再求f′(x)在[e,e2]上的最小值,結(jié)合(2)求出的a的范圍對(duì)a進(jìn)行討論:和,分別求出f′(x)在[e,e2]上的單調(diào)性,再求出最小值或值域,代入不等式再與a的范圍進(jìn)行比較.
由已知函數(shù)的定義域均為,且
(1)函數(shù),則,
當(dāng)且時(shí),;當(dāng)時(shí),.
所以函數(shù)的單調(diào)減區(qū)間是,增區(qū)間是;
(2)因在上為減函數(shù),故在上恒成立,
所以當(dāng)時(shí),,
又,
故當(dāng),即時(shí),,
所以于是,故的最小值為;
(3)命題“若使成立”等價(jià)于:
“當(dāng)時(shí),有”,
由(2),當(dāng)時(shí),,∴,
問題等價(jià)于:“當(dāng)時(shí),有”,
①當(dāng)時(shí),由(2),在上為減函數(shù),
則,故.
②當(dāng)時(shí),由于在上為增函數(shù),
故的值域?yàn)?/span>,即.
由的單調(diào)性和值域知,唯一,使,且滿足:
當(dāng)時(shí),,為減函數(shù);當(dāng)時(shí),,為增函數(shù);
所以,,.
所以,,與矛盾,不合題意.
綜上,得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棱長(zhǎng)為1的正方體中,點(diǎn)、分別在線段、上運(yùn)動(dòng)(不包括線段端點(diǎn)),且.以下結(jié)論:①;②若點(diǎn)、分別為線段、的中點(diǎn),則由線與確定的平面在正方體上的截面為等邊三角形;③四面體的體積的最大值為;④直線與直線的夾角為定值.其中正確的結(jié)論為______.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線和曲線的極坐標(biāo)方程;
(2)射線:依次與曲線和曲線交于、兩點(diǎn),射線:依次與曲線和曲線交于、兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),已知直線的方程為.
(1)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最小值;
(2)若曲線上的所有點(diǎn)均在直線的右下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,正方形的邊長(zhǎng)為4,,,把四邊形沿折起,使得平面,是的中點(diǎn),如圖②
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以為首項(xiàng)的數(shù)列滿足:
(1)當(dāng),時(shí),求數(shù)列的通項(xiàng)公式;
(2)當(dāng),時(shí),試用表示數(shù)列前100項(xiàng)的和;
(3)當(dāng)(是正整數(shù)),,正整數(shù)時(shí),判斷數(shù)列,,,是否成等比數(shù)列?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)的導(dǎo)函數(shù)在上有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過點(diǎn)P。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率為1的直線l過橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com