【題目】給定函數(shù)和,若存在常數(shù),,使得函數(shù)和對(duì)其公共定義域的任何實(shí)數(shù)分別滿足和,則稱直線:為函數(shù)和的“隔離直線”,給出下列四組函數(shù):
(1),; (2),;
(3),; (4),;
其中函數(shù)和存在“隔離直線”的序號(hào)是( )
A.(1)(3)B.(1)(3)(4)C.(1)(2)(3)D.(2)(4)
【答案】A
【解析】
逐一分析每組函數(shù)圖象,并畫出函數(shù)圖象,從函數(shù)的定義域,值域和圖象共同分析是否有滿足條件的直線.
A.如圖畫出函數(shù)的圖象,兩個(gè)函數(shù)的公共定義域是,的值域是,的值域是,所以存在直線滿足條件,此時(shí),故成立;
B.
兩個(gè)函數(shù)的公共定義域是,由圖象可知當(dāng)時(shí), ,當(dāng)時(shí), ,沒有直線滿足條件,故不成立;
C.
函數(shù)和公共定義域是,圖象如圖所示,很明顯存在直線滿足條件,例:當(dāng)時(shí)滿足條件,故正確;
D.函數(shù)的公共定義域是,和都是增函數(shù),畫出函數(shù)的圖象,
圖象有兩個(gè)交點(diǎn),顯然不存在直線滿足條件,故不成立.
正確的有(1)(3)
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程1表示焦點(diǎn)在x軸上的雙曲線.
(1)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)系方程和直線的普通方程;
(2)點(diǎn)在曲線上,且到直線的距離為,求符合條件的點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】材料一:2018年,全國(guó)逾半省份將從秋季入學(xué)的高一年級(jí)開始實(shí)行新的學(xué)業(yè)水平考試和高考制度.所有省級(jí)行政區(qū)域均突破文理界限,由學(xué)生跨文理選科,均設(shè) 置“”的考試科目.前一個(gè)“3”為必考科目,為統(tǒng)一高考科目語(yǔ)文、數(shù)學(xué)、外語(yǔ).除個(gè)別省級(jí)行政區(qū)域仍執(zhí)行教育部委托的分省命題任務(wù)外,絕大部分省級(jí)行政區(qū)域均由教育部考試中心統(tǒng)一命題;后一個(gè)“3”為高中學(xué)業(yè)水平考試(簡(jiǎn)稱“學(xué)考”)選考科目,由各省級(jí)行政區(qū)域自主命題.材料二:2019年4月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實(shí)施方案,方案決定從2018年秋季入學(xué)的高中一年級(jí)學(xué)生開始實(shí)施高考綜合改革.考生總成績(jī)由全國(guó)統(tǒng)一高考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)3個(gè)科目成績(jī)和考生選擇的3科普通高中學(xué)業(yè)水平選擇性考試科目成績(jī)組成,滿分為750分.即通常所說的“”模式,所謂“”,即“3”是三門主科,分別是語(yǔ)文、數(shù)學(xué)、外語(yǔ),這三門科目是必選的.“1”指的是要在物理、歷史里選一門,按原始分計(jì)入成績(jī).“2”指考生要在生物、化學(xué)、思想政治、地理4門中選擇2門.但是這幾門科目不以原始分計(jì)入成績(jī),而是等級(jí)賦分.等級(jí)賦分指的是把考生的原始成績(jī)根據(jù)人數(shù)的比例分為、、、、五個(gè)等級(jí),五個(gè)等級(jí)分別對(duì)應(yīng)著相應(yīng)的分?jǐn)?shù)區(qū)間,然后再用公式換算,轉(zhuǎn)換得出分?jǐn)?shù).
(1)若按照“”模式選科,求選出的六科中含有“語(yǔ)文,數(shù)學(xué),外語(yǔ),物理,化學(xué)”的概率.
(2)某教育部門為了調(diào)查學(xué)生語(yǔ)數(shù)外三科成績(jī)與選科之間的關(guān)系,現(xiàn)從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語(yǔ)數(shù)外的網(wǎng)絡(luò)測(cè)試,滿分450分,并給前400名頒發(fā)榮譽(yù)證書,假設(shè)該次網(wǎng)絡(luò)測(cè)試成績(jī)服從正態(tài)分布,且滿分為450分;
①考生甲得知他的成績(jī)?yōu)?/span>270分,考試后不久了解到如下情況:“此次測(cè)試平均成績(jī)?yōu)?/span>171分,351分以上共有57人”,問甲能否獲得榮譽(yù)證書,請(qǐng)說明理由;
②考生丙得知他的實(shí)際成績(jī)?yōu)?/span>430分,而考生乙告訴考生丙:“這次測(cè)試平均成績(jī)?yōu)?/span>201分,351分以上共有57人”,請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)知識(shí)幫助丙同學(xué)辨別乙同學(xué) 信息的真?zhèn)危?/span>
附:;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)平面上點(diǎn)對(duì)應(yīng)的復(fù)數(shù) (為虛數(shù)單位)滿足,點(diǎn)的軌跡方程為曲線. 雙曲線:與曲線有共同焦點(diǎn),傾斜角為的直線與雙曲線的兩條漸近線的交點(diǎn)是、,,為坐標(biāo)原點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)求直線的方程;
(3)設(shè)△PQR三個(gè)頂點(diǎn)在曲線上,求證:當(dāng)是△PQR重心時(shí),△PQR的面積是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,以橢圓四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為.
(1)求橢圓E的方程;
(2)過橢圓E的右焦點(diǎn)作直線與E交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求面積的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐,平面,,,且,,.
(1)取中點(diǎn),求證:平面;
(2)求直線與所成角的余弦值.
(3)在線段上,是否存在一點(diǎn),使得二面角的大小為,如果存在,求與平面所成角,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為解決城市的擁堵問題,某城市準(zhǔn)備對(duì)現(xiàn)有的一條穿城公路進(jìn)行分流,已知穿城公路自西向東到達(dá)城市中心后轉(zhuǎn)向方向,已知,現(xiàn)準(zhǔn)備修建一條城市高架道路,在上設(shè)一出入口,在上設(shè)一出口,假設(shè)高架道路在部分為直線段,且要求市中心與的距離為.
(1)若,求兩站點(diǎn)之間的距離;
(2)公路段上距離市中心處有一古建筑群,為保護(hù)古建筑群,設(shè)立一個(gè)以為圓心,為半徑的圓形保護(hù)區(qū).因考慮未來道路的擴(kuò)建,則如何在古建筑群和市中心之間設(shè)計(jì)出入口,才能使高架道路及其延伸段不經(jīng)過保護(hù)區(qū)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機(jī)問卷50名使用者,然后根據(jù)這50名的問卷評(píng)分?jǐn)?shù)據(jù),統(tǒng)計(jì)得到如圖所示的頻率布直方圖,其統(tǒng)計(jì)數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計(jì)這50名使用者問卷評(píng)分?jǐn)?shù)據(jù)的中位數(shù);
(2)從評(píng)分在[40,60)的問卷者中,隨機(jī)抽取2人,求此2人評(píng)分都在[50,60)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com