【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:,過點的直線的參數(shù)方程為:(為參數(shù)),直線與曲線分別交于、兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求線段的長和的積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線外一點M作拋物線的兩條切線,兩切點的連線段稱為點M對應(yīng)的切點弦已知拋物線為,點P,Q在直線l:上,過P,Q兩點對應(yīng)的切點弦分別為AB,CD
當(dāng)點P在l上移動時,直線AB是否經(jīng)過某一定點,若有,請求出該定點的坐標(biāo);如果沒有,請說明理由
當(dāng)時,點P,Q在什么位置時,取得最小值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點為極點,以軸正半軸為極軸.已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,射線,,,與曲線分別交異于極點的四點,,,.
()若曲線關(guān)于曲線對稱,求的值,并把曲線和化成直角坐標(biāo)方程.
()求,當(dāng)時,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年11月2日,中國藥品監(jiān)督管理局批準(zhǔn)了治療阿爾茨海默病(老年癡呆癥)新藥GV-971的上市申請,這款新藥由我國科研人員研發(fā),我國擁有完全知識產(chǎn)權(quán).據(jù)悉,該款藥品為膠囊,從外觀上看是兩個半球和一個圓柱組成,其中上半球是膠囊的蓋子,粉狀藥物儲存在圓柱及下半球中.膠囊軸截面如圖所示,兩頭是半圓形,中間區(qū)域是矩形,其周長為50毫米,藥物所占的體積為圓柱體積和一個半球體積之和.假設(shè)的長為毫米.(注:,,其中為球半徑,為圓柱底面積,為圓柱的高)
(1)求膠囊中藥物的體積關(guān)于的函數(shù)關(guān)系式;
(2)如何設(shè)計與的長度,使得最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
(1)當(dāng)時,求在上的最大值和最小值;
(2)當(dāng)時,過點作函數(shù)的圖象的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的兩個頂點為,,平面內(nèi)P,Q同時滿足;;.
求頂點A的軌跡E的方程;
過點作兩條互相垂直的直線,,直線,被點A的軌跡E截得的弦分別為,,設(shè)弦,的中點分別為M,試問:直線MN是否恒過一個頂點?若過定點,請求出該頂點,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】順次連接橢圓的四個頂點恰好構(gòu)成了一個邊長為且面積為的菱形。
(1)求橢圓的方程;
(2),是橢圓上的兩個不同點,若直線,的斜率之積為(以為坐標(biāo)原點),線段上有一點滿足,連接并延長交橢圓于點,求橢圓的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com